HDU 1711 Number Sequence(KMP算法求模式串开头位置)

Given two sequences of numbers : a[1], a[2], ...... , a[N], and b[1], b[2], ...... , b[M] (1 <= M <= 10000, 1 <= N <= 1000000). Your task is to find a number K which make a[K] = b[1], a[K + 1] = b[2], ...... , a[K + M - 1] = b[M]. If there are more than one K exist, output the smallest one. 

Input

The first line of input is a number T which indicate the number of cases. Each case contains three lines. The first line is two numbers N and M (1 <= M <= 10000, 1 <= N <= 1000000). The second line contains N integers which indicate a[1], a[2], ...... , a[N]. The third line contains M integers which indicate b[1], b[2], ...... , b[M]. All integers are in the range of [-1000000, 1000000]. 

Output

For each test case, you should output one line which only contain K described above. If no such K exists, output -1 instead. 

Sample Input

2
13 5
1 2 1 2 3 1 2 3 1 3 2 1 2
1 2 3 1 3
13 5
1 2 1 2 3 1 2 3 1 3 2 1 2
1 2 3 2 1

Sample Output

6
-1

今天看了一晚上kmp算法。明白了神奇的next数组;

感谢大佬指点:https://blog.csdn.net/v_JULY_v/article/details/7041827

代码如下:

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#include<vector>
#include<map>
#include<cmath>
#define ll long long
#define inf 0x3f3f3f3f
#define N 1000010
#define M 10010
#define mod 1000000007
using namespace std;
int next1[M];
int a[N];
int b[M];
int n,m;
void nextt(){
    int k=-1,j=0;
    next1[0]=-1;
    while(j<m){
        if(k==-1||b[j]==b[k]){
            j++;k++;
            if(b[j]!=b[k]){
                next1[j]=k;
            }else{
                next1[j]=next1[k];
            }
        }else{
            k=next1[k];
        }
    }
}
int kmp(){
    int i=0,j=0;
    while(i<n&&j<m){
        if(j==-1||a[i]==b[j]){
            i++;
            j++;
        }else{
            j=next1[j];
        }
    }
    if(j==m)return i-j+1;
    else return -1;
}
int main(){
    int T;
    scanf("%d",&T);
    while(T--){
        scanf("%d %d",&n,&m);
        for(int i=0;i<n;i++){
            scanf("%d",&a[i]);
        }
        for(int i=0;i<m;i++){
            scanf("%d",&b[i]);
        }
        nextt();
        printf("%d\n",kmp());
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值