SQL学习笔记——task05:SQL高级处理


前言

在日常工作中,经常会遇到需要在每组内排名,比如下面的业务需求:

  1. 排名问题:每个部门按业绩来排名;
  2. topN问题:找出每个部门排名前N的员工进行奖励。

面对这类需求,就需要使用sql的高级功能窗口函数了。


1. 窗口函数

1.1 窗口函数概念及基本的使用方法

窗口函数也称为OLAP函数。OLAP 是OnLine AnalyticalProcessing 的简称,意思是对数据库数据进行实时分析处理。

为了便于理解,称之为窗口函数。常规的SELECT语句都是对整张表进行查询,而窗口函数可以让我们有选择的去某一部分数据进行汇总、计算和排序。

窗口函数的通用形式:

<窗口函数> OVER ([PARTITION BY <列名>]
						ORDER BY <排序用列名>)

其中的*[] 中的内容可以省略。
窗口函数最关键的的是搞明白关键字PARTITION BYORDER BY 的作用。

PARTITON BY是用来分组,即选择要看哪个窗口,类似于GROUP BY 子句的分组功能,但是PARTITION BY 子句并不具备GROUP BY 子句的汇总功能,并不会改变原始表中记录的行数。

ORDER BY是用来排序,即决定窗口内,是按那种规则(字段)来排序的。

举个例子:

SELECT product_name
		,product_type
		,sale_price
		,RANK() OVER (PARTITION BY product_type
		ORDER BY sale_price) AS ranking
 FORM product

得到的结果:
在这里插入图片描述

先忽略生成的新列 - [ranking], 看下原始数据在PARTITION BY 和 ORDER BY 关键字的作用下发生了什么变化。

PARTITION BY 能够设定窗口对象范围。本例中,为了按照商品种类进行排序,我们指定了product_type。即一个商品种类就是一个小的"窗口"。

ORDER BY 能够指定按照哪一列、何种顺序进行排序。为了按照销售单价的升序进行排列,我们指定了sale_price。此外,窗口函数中的ORDER BY与SELECT语句末尾的ORDER BY一样,可以通过关键字ASC/DESC来指定升序/降序。省略该关键字时会默认按照ASC,也就是升序进行排序。

在这里插入图片描述

2. 窗口函数种类

大致来说,窗口函数可以分为两类。

  1. 将SUM、MAX、MIN等聚合函数用在窗口函数中;
  2. RANK、DENSE_RANK等排序用的专用窗口函数。

2.1 专用窗口函数

  • RANK函数
    计算排序时,如果存在相同位次的记录,则会跳过之后的位次。(例)有3条记录排在第1位时:1位、1位、1位、4位…

  • DENSE_RANK函数
    同样是计算排序,即使存在相同位次的记录,也不会跳过之后的位次。(例)有3条记录排在第1位时:1位、1位、1位、2位…

  • ROW_NUMBER函数
    同样是计算排序,即使存在相同位次的记录,也不会跳过之后的位次。(例)有3条记录排在第1位时:1位、2位、3位、4位。

运行以下代码:

SELECT product_name
		,product_type
		,sale_price
		,RANK() OVER (ORDER BY sale_price) AS ranking
		,DENSE_RANK() OVER (ORDER BY sale_price) AS dense_ranking
		,ROW_NUMBER() OVER (ORDER BY sale_price) AS row_num
 FROM product

执行结果:

在这里插入图片描述

2.2 聚合函数在窗口函数上的使用

聚合函数在窗口函数中的使用方法和之前的专用窗口函数一样,只是出来的结果是一个累计的聚合函数值。

运行以下代码:

SELECT product_id
		,product_name
		,sale_price
		,SUM(sale_price) OVER (ORDER BY product_id) AS current_sum
		,AVG(sale_price) OVER (ORDER BY product_id) AS current_avg
		FROM product;

执行结果:

在这里插入图片描述

执行结果:
在这里插入图片描述

可以看出,聚合函数结果是,按我们指定的排序,这里是product_id,当前所在行及之前所有的行的合计或均值。即累计到当前的聚合。

3. 窗口函数的应用 - 计算移动平均

在上面提到,聚合函数在窗口函数使用时,计算的是累积到当前行的所有的数据的聚合。实际上,还可以指定更加详细的汇总范围。该汇总范围称为框架(frame)

语法:

<窗口函数> OVER (ORDER BY <排序用列名>
				ROWS n PRECEDING)

<窗口函数> OVER (ORDER BY <排序用列名>
				ROWS BETWEEN n PRECEDING AND n FOLLOWING)
  1. PRECEDING (“之前”),将框架指定为“截止到之前n行”,加上自身行;
  2. FOLLOWING (“之后”),将框架指定为“截止到之后n行”,加上自身行。
    BETWEEN 1 PRECEDING AND 1 FOLLOWING,将框架指定为“之前1行”+“之后1行”

执行以下代码:

SELECT product_id
		,product_name
		,sale_price
		,AVG(sale_price) OVER (ORDER BY product_id
		ROWS 2 PRECEDING) AS moving_avg
		,AVG(sale_price) OVER (ORDER BY product_id
		ROWS BETWEEN 1 PRECEDING
				AND 1 FOLLOWING) AS moving_avg
 FROM product

执行结果:
注意观察框架的范围。

ROWS 2 PRCEDING:
在这里插入图片描述

ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING:

在这里插入图片描述

3.1 窗口函数适用的范围和注意事项

  • 原则上,窗口函数只能在SELECT 子句中使用
  • 窗口函数OVER 中的ORDER BY 子句并不会影响最终结果的排序。其只是用来决定窗口函数按何种顺序计算

4. GROUPING 运算符

4.1 ROLLUP -计算合计及小计

常规的GROUP BY 只能得到每个分类的小计,有时候还需要计算分类的合计,可以用ROLLUP 关键字。

SELECT product_type
		,regist_date
		,SUM(sale_price) AS sum_price
	FROM product
GROUP BY product_type, regist_date WITH ROLLUP

得到的结果为:

在这里插入图片描述

这里ROLLUP 对product_type, regist_date两列进行合计汇总。结果实际上有三层聚合,如下图模块3是常规的 GROUP BY的结果,需要注意的是衣服 有个注册日期为空的,这是本来数据就存在日期为空的,不是对衣服类别的合计;模块2和1 ROLLUP 带来的合计,模块2是对产品种类的合计,模块1是对全部数据的统计。

ROLLUP 可以对多列进行汇总小计和合计。
在这里插入图片描述

练习题

练习1:

说一下使用的 product(商品)表执行如下 SELECT 语句所能得到的结果。

SELECT product_id
		,product_name
		,sale_price
		,MAX(sale_price) OVER (ORDER BY product_id) AS Current_max_price
		FROM product

运行结果:
在这里插入图片描述

练习2:

继续使用product 表,计算出按照登记日期(registe_date )升序进行排列的各日期的销售单价(sale_price)的总额。排序是需要将登记日期为NULL 的“运动T恤”记录排在第1位(也就是将其看作比其他日期都早)。

SELECT product_id
       ,product_name
       ,regist_date
       ,SUM(sale_price) OVER (partition by regist_date) AS sum_price_by_date
  FROM product
ORDER BY -ISNULL(regist_date), regist_date;

运行结果:
在这里插入图片描述

练习3 思考题:

  1. Q:窗口函数不指定RARTITION BY 的效果是什么?

A: 1. 窗口函数具有以下功能:
1)同时具有分组(partition by)和排序(order by)的功能;
2)不减少原表的行数,所以经常用来在每组内排名。
如果不指定PARTITION BY的话,窗口函数的操作窗口就是整个表(即所有记录都算为同一个分组)。

  1. Q:为什么窗口函数只能在SELECT 子句使用? 实际上,在ORDER BY 子句使用系统并不会报错。

A:因为窗口函数是对where或者group by子句处理后的结果进行操作,所以窗口函数原则上只能写在select子句中;而ORDER BY 子句则是对SELECT 子句中的结果进行操作,操作的是整个结果表,所以可以使用窗口函数,但是窗口函数的返回结果只作为ORDER BY子句的排序依据,并不能返回期望的结果。


总结

  1. 窗口函数语法:
<窗口函数> over (partition by <用于分组的列名>
				order by <用于排序的列名>)

<窗口函数>的位置,可以放以下两种函数:

  • 专用窗口函数,比如rank, dense_rank, row_number等
  • 聚合函数,如sum. avg, count, max, min等
  1. 窗口函数有以下功能:
  • 同时具有分组(partition by)和排序(order by)的功能
  • 不减少原表的行数,所以经常用来在每组内排名
  1. 窗口函数的使用场景:

业务需求 “在每组内排名”,比如:

  • 排名问题:每个部门按业绩来排名
  • topN问题:找出每个部门排名前N的员工进行奖励
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值