思想:复制子序列问题可以考虑使用dp,而本题 这样的子序列因为只有一个序列,所以在定义dp[]时只需要1个状态就好了
dp[i]表示遍历到第i个位置上时的最长上升子序列的长度
base case:dp[i]=1//每个元素自身都为1个上升子序列
状态转移方程:
if(nums[i]>nums[j]):dp[i] = Max(dp[j]|j=0,1…i-1)+1(题目没有要求是连续的最长递增子序列)
else:什么也不干,因为nums[i]与之前的递增子序列构不成递增的序列
class Solution {
public int lengthOfLIS(int[] nums) {
int len = nums.length;
if(len<=0) return 0;
int[]dp = new int[len];
int res = 0;
//base case
Arrays.fill(dp,1);
//进行状态转移
for(int i=0;i<len;i++){
//做选择
for(int j=i-1;j>=0;j--){
if(nums[i]>nums[j]){
dp[i] = Math.max(dp[i],dp[j]+1);
}
}
res = Math.max(res,dp[i]);
}
return res;//注意这里,dp[len-1]记录的不一定是最长递增子序列的长度,因为有可能nums[len-1]不一定能与之前的递增子序列构成一个递增序列
}
}