T300最长递增子序列

思想:复制子序列问题可以考虑使用dp,而本题 这样的子序列因为只有一个序列,所以在定义dp[]时只需要1个状态就好了
dp[i]表示遍历到第i个位置上时的最长上升子序列的长度
base case:dp[i]=1//每个元素自身都为1个上升子序列
状态转移方程:
if(nums[i]>nums[j]):dp[i] = Max(dp[j]|j=0,1…i-1)+1(题目没有要求是连续的最长递增子序列)
else:什么也不干,因为nums[i]与之前的递增子序列构不成递增的序列

class Solution {
    public int lengthOfLIS(int[] nums) {
      int len = nums.length;
      if(len<=0) return 0;
      int[]dp = new int[len];
      int res = 0;
      //base case
      Arrays.fill(dp,1);
      //进行状态转移
      for(int i=0;i<len;i++){
          //做选择
          for(int j=i-1;j>=0;j--){
              if(nums[i]>nums[j]){
                  dp[i] = Math.max(dp[i],dp[j]+1);
              }
          }
          res = Math.max(res,dp[i]);
      }
      return res;//注意这里,dp[len-1]记录的不一定是最长递增子序列的长度,因为有可能nums[len-1]不一定能与之前的递增子序列构成一个递增序列
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值