经典背包问题1——01背包问题、完全背包问题、多重背包问题(数据范围100)、多重背包问题(数据范围1000/2000)

经典背包问题1——01背包问题、完全背包问题、多重背包问题(数据范围100)、多重背包问题(数据范围1000/2000)

先放上结论代码,再看题:

#include<iostream>
#include<algorithm>
#include<iostream>
using namespace std;

const int N = 1010;//物品最多数量
int dp[N];//全局自动初始化为0
int n,m;//要输入的n个物品,m的容量
int v[N],w[N],s[N];//要输入的物品的体积,物品的价值,和物品的个数

int main(){
    cin>>n>>m;
    for(int i = 1;i<=n;i++){//给第i个物品(没有第0个)赋值体积,价值与个数
        cin>>v[i]>>w[i]>>s[i];
    }
//********************01背包**************************
for(int i = 1;i<=n;i++){
    for(int j = m;j>=v[i];j--){
        dp[j] = max(dp[j],dp[j-v[i]]+w[i]);
    }
}
//********************完全背包*************************
for(int i = 1;i<=n;i++){
    for(int j = v[i];j<=m;j++){
        dp[j] = max(dp[j],dp[j-v[i]]+w[i]);
    }
}
//********************多重背包(数据范围100内)***********
//01的改进
for(int i = 1;i<=n;i++){
    for(int j = m;j>=0;j--){
        for(int k = 1;k<=s[i] && k*v[i]<=j;k++){
            dp[j] = max(dp[j],dp[j-k*v[i]]+k*w[i]);
        }
    }
}
//********************多重背包(数据范围1000/2000)******
//把每个物品的种类个数拆成二进制问题
struct Good{
    int v,w;
};
vector<Good> goods;
    for(int i = 1;i<=n;i++){//给第i个物品(没有第0个)赋体积与价值
        cin>>v[i]>>w[i]>>s[i];
        //把每个物品像分苹果(1000个苹果分成有限堆,可以取不同的堆来表示不同个数的苹果)一样分开
        for(int k = 1;k<=s[i];k*=2){
            s[i] = s[i]-k;
            goods.push_back({v[i]*k,w[i]*k});
        }
        if(s[i]>0) goods.push_back({v[i]*s[i],w[i]*s[i]});
    }
    //现在就回归到01背包问题
    for(auto good:goods){
        for(int j = m;j>=good.v;j--){
            dp[j] = max(dp[j],dp[j-good.v]+good.w);
        }
    }
//****************************************************
    cout<<dp[m]<<endl;
    return 0;
}

1——01背包问题

有 N 件物品和一个容量是 V的背包。每件物品只能使用一次。

第 i件物品的体积是 vi,价值是 wi。

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。输出最大价值。

输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。
接下来有 N行,每行两个整数 vi,wi,用空格隔开,分别表示第 i件物品的体积和价值。

输出格式

输出一个整数,表示最大价值。

数据范围
0<N,V≤1000
0<vi,wi≤1000

输入样例

4 5
1 2
2 4
3 4
4 5

输出样例:

8



动态规划思路:

  1. 定义dp,定义dp[i][j]的含义为当选择前i个物品,总体积为j的前提下,总价值是多少;
  2. 状态变化为每种物品都尝试,总体积也要不断增加,所以两次嵌套遍历第一层为从0i,第二层为从0j
  3. 确定状态转移方程,当我们看前i个物品的时候可以选择放不放第i个物品到里面,要么放,要么不放,就要对比两者哪种的价值是最大的。不放里面,就是看前i-1个物品,容量为j的时候;放里面就是看前i-1个物品,总容量为j-当前第i个物品容量(前提是j要大于当前第i个物品容量)的时候。

代码:

#include<iostream>
#include<algorithm>
using namespace std;

const int N = 1010;//物品最多数量
int dp[N][N];//全局自动初始化为0
int n,m;//要输入的n个物品,m的容量
int v[N],w[N];//要输入的物品的体积和物品的价值

int main(){
    cin>>n>>m;
    for(int i = 1;i<=n;i++){//给第i个物品(没有第0个)赋体积与价值
        cin>>v[i]>>w[i];
    }
    for(int i = 1;i<=n;i++){//从前i个物品选
        for(int j = 0;j<=m;j++){//每个容量的时候,看价值最大是多少
            dp[i][j] = dp[i-1][j];//不选第i个
            if(j>=v[i]){
                dp[i][j] = max(dp[i][j],dp[i-1][j-v[i]]+w[i]);//选第i个,但是要跟选之前进行对比
            }
        }
    }
    cout<<dp[n][m]<<endl;
    return 0;
}

由于我们看到代码里,第i个背包只与第i-1个背包有关,所以我们可以对代码进行优化,采用一维数组,先上代码再解释:

#include<iostream>
#include<algorithm>
using namespace std;

const int N = 1010;//物品最多数量
int dp[N];//全局自动初始化为0
int n,m;//要输入的n个物品,m的容量
int v[N],w[N];//要输入的物品的体积和物品的价值

int main(){
    cin>>n>>m;
    for(int i = 1;i<=n;i++){//给第i个物品(没有第0个)赋体积与价值
        cin>>v[i]>>w[i];
    }
    for(int i = 1;i<=n;i++){
        for(int j = m;j>=v[i];j--){
            dp[j] = max(dp[j],dp[j-v[i]]+w[i]);
        }
    }
    cout<<dp[m]<<endl;
    return 0;
}

dp问题的优化,一般都是对代码进行优化。
dp[i][j]压缩成一维,把i那层拿掉,
这行代码:

dp[j] = max(dp[j],dp[j-v[i]]+w[i]);

对于j(容量)来讲,dp[j]的转移要么是dp[j],要么是dp[j-v[i]],也就是说当前体积要么是自己转移过来,要么是比自己小的体积转移过来;所以体积j从大到小枚举,从而可以保证枚举到当前体积j的时候,j - v[i]因为小还没被更新过,它是等价于dp[i - 1][j - v[i]],也就是上一层的。
所以for循环写为:

for(int j = m;j>=v[i];j--)

2——完全背包问题

完全背包问题的题目跟01背包问题只有一处不同,就是01背包问题是每种物品只有一种,而完全背包问题是每种物品有无数个,可以任意选。

动态规划思路:
其他跟01背包问题思路一样,只是在选第i这一步比01背包问题要复杂一些。01背包问题选第i是先除去这第i种然后看前i-1种,价值最大是多少;而完全背包是分别选第i种1个、或者2个、或者三个…之后再选前i-1种他们的最大价值是多少。
在这里插入图片描述

这一步的推导:
在这里插入图片描述
代码:

#include<iostream>
#include<algorithm>
using namespace std;

const int N = 1010;//物品最多数量
int dp[N][N];//全局自动初始化为0
int n,m;//要输入的n个物品,m的容量
int v[N],w[N];//要输入的物品的体积和物品的价值

int main(){
    cin>>n>>m;
    for(int i = 1;i<=n;i++){//给第i个物品(没有第0个)赋体积与价值
        cin>>v[i]>>w[i];
    }
    for(int i = 1;i<=n;i++){
        for(int j = 0;j<=m;j++){
            dp[i][j] = dp[i-1][j];
            if(j>=v[i]){
                dp[i][j] = max(dp[i][j],dp[i][j-v[i]]+w[i]);
            }
        }
    }
    cout<<dp[n][m]<<endl;
    return 0;
}

优化:
优化思路和01背包一样,对代码进行优化,其实不难看到,与01背包的区别就是,dp[j-v[i]]是依赖本层还是上一层,01背包的优化是

dp[j] = max(dp[j],dp[j-v[i]]+w[i]);

去掉dp[i]之后,max的后半部分原本是依赖于上一层,也就是

dp[i][j] = max(dp[i][j],dp[i-1][j-v[i]]+w[i]);

优化完了之后如果j是从小到大的话,dp[j-v[i]]是已经算过的也就是依赖本层,故01背包的优化是让循环从大到小循环,才能保证优化后跟优化前恒等。

而完全背包此时已经是dp[i][j-v[i]],进行优化则是依赖于本层,则j层循环依旧是从小到大。

故:

#include<iostream>
#include<algorithm>
using namespace std;

const int N = 1010;//物品最多数量
int dp[N];//全局自动初始化为0
int n,m;//要输入的n个物品,m的容量
int v[N],w[N];//要输入的物品的体积和物品的价值

int main(){
    cin>>n>>m;
    for(int i = 1;i<=n;i++){//给第i个物品(没有第0个)赋体积与价值
        cin>>v[i]>>w[i];
    }
    for(int i = 1;i<=n;i++){
        for(int j = v[i];j<=m;j++){
            dp[j] = max(dp[j],dp[j-v[i]]+w[i]);
        }
    }
    cout<<dp[m]<<endl;
    return 0;
}

3——多重背包问题(数据范围100)

多重背包的其他定义和前两种无异,只是多了个每种物品有多少个(有限个)的限制。

输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。

接下来有 N行,每行三个整数 vi,wi,si,用空格隔开,分别表示第 i种物品的体积、价值和数量。

输出格式
输出一个整数,表示最大价值。

数据范围
0<N,V≤100
0<vi,wi,si≤100

输入样例

4 5
1 2 3
2 4 1
3 4 3
4 5 2

输出样例:

10


动态规划思路:

其实就是比01背包问题多了个每种选几个的循环;

#include<iostream>
#include<algorithm>
using namespace std;

const int N = 110;//物品最多数量
int dp[N];//全局自动初始化为0
int n,m;//要输入的n个物品,m的容量
int v[N],w[N],s[N];//要输入的物品的体积,物品的价值,和物品的个数

int main(){
    cin>>n>>m;
    for(int i = 1;i<=n;i++){//给第i个物品(没有第0个)赋值体积,价值与个数
        cin>>v[i]>>w[i]>>s[i];
    }
    for(int i = 1;i<=n;i++){
        for(int j = m;j>=0;j--){
            for(int k = 1;k<=s[i] && k*v[i]<=j;k++){//每种物品选几个
                dp[j] = max(dp[j],dp[j-k*v[i]]+k*w[i]);
            }
        }
    }
    cout<<dp[m]<<endl;
    return 0;
}

4——多重背包问题(数据范围1000/2000)

输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。

接下来有 N行,每行三个整数 vi,wi,si,用空格隔开,分别表示第 i种物品的体积、价值和数量。

输出格式
输出一个整数,表示最大价值。

数据范围
0<N≤1000
0<V≤2000
0<vi,wi,si≤2000

输入样例

4 5
1 2 3
2 4 1
3 4 3
4 5 2

输出样例:

10


这一题跟上一题的区别就是数据范围更大了,这时候三层嵌套循环就不满足时间条件了,我们可以选择把每个物品像分苹果(1000个苹果分成有限堆,可以取不同的堆来表示不同个数的苹果)一样分开(其实就是利用二进制(8421这种)可以组合为任意的数的思想),然后摊开来就像01背包问题那样解决就好了。

#include<iostream>
#include<algorithm>
using namespace std;

const int N = 2010;//物品最多数量
int dp[N];//全局自动初始化为0
int n,m;//要输入的n个物品,m的容量
int v[N],w[N],s[N];//要输入的物品的体积和物品的价值

struct Good{
    int v,w;
};

int main(){
    cin>>n>>m;
    vector<Good> goods;
    for(int i = 1;i<=n;i++){//给第i个物品(没有第0个)赋体积与价值
        cin>>v[i]>>w[i]>>s[i];
        //把每个物品像分苹果(1000个苹果分成有限堆,可以取不同的堆来表示不同个数的苹果)一样分开
        for(int k = 1;k<=s[i];k*=2){
            s[i] = s[i]-k;
            goods.push_back({v[i]*k,w[i]*k});
        }
        if(s[i]>0) goods.push_back({v[i]*s[i],w[i]*s[i]});
    }
    //现在就回归到01背包问题
    for(auto good:goods){
        for(int j = m;j>=good.v;j--){
            dp[j] = max(dp[j],dp[j-good.v]+good.w);
        }
    }
    cout<<dp[m]<<endl;
    return 0;
}

比较难理解,多自己敲几遍,反复思考就好了,观看视频连接:
大雪菜闫氏DP

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值