分组背包
Time Limit:10000MS Memory Limit:65536K
Total Submit:133 Accepted:96
Case Time Limit:1000MS
Description
有N件物品和一个容量为V的背包。第i件物品的费用是c[i],价值是w[i]。这些物品被划分为若干组,每组中的物品互相冲突,最多选一件。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。
Input
第一行:三个整数,v(背包容量,v<=200),n(物品数量,n<=30)和t(最大组号,t<=10);
第2…n+1行:每行三个整数wi,ci,p,表示每个物品的重量、价值、所属组号。
Output
仅一行,一个数,表示最大总价值。
Sample Input
10 6 3
2 1 1
3 3 1
4 8 2
6 9 2
2 8 3
3 9 3
Sample Output
20
思路
先将物品按组分类。
状态转移方程:
1
<
=
i
<
=
T
,
v
>
=
k
>
=
1
,
1
<
=
j
<
=
l
[
i
]
1<=i<=T,v>=k>=1,1<=j<=l[i]
1<=i<=T,v>=k>=1,1<=j<=l[i]
a
=
m
a
x
(
a
,
f
[
k
−
c
[
t
[
i
]
[
j
]
]
]
+
w
[
t
[
i
]
[
j
]
]
)
a=max(a,f[k-c[t[i][j]]]+w[t[i][j]])
a=max(a,f[k−c[t[i][j]]]+w[t[i][j]])
f
[
k
]
=
a
f[k]=a
f[k]=a
T
表
示
组
数
,
v
表
示
背
包
容
量
,
l
[
i
]
表
示
第
i
组
的
物
品
数
T表示组数,v表示背包容量,l[i]表示第i组的物品数
T表示组数,v表示背包容量,l[i]表示第i组的物品数
枚举组,容量,并枚举组内物品找出其中价值最大数 ——
a
a
a
再将
a
a
a 赋值给
f
[
k
]
f[k]
f[k]
代码
#include<iostream>
using namespace std;
int v,n,t[211][211],w[211],c[211],p,T,l[211],a,f[211];
void in(){
//输入
scanf("%d%d%d",&v,&n,&T);
for(int i=1;i<=n;i++){
scanf("%d%d%d",&c[i],&w[i],&p);
t[p][++l[p]]=i;//给该物品以组分类,且给该物品下标建链
}
}void dp(){
for(int i=1;i<=T;i++){
for(int k=v;k>=1;k--){
a=f[k];//赋初值
for(int j=1;j<=l[i];j++){
if(k>=c[t[i][j]])
a=max(a,f[k-c[t[i][j]]]+w[t[i][j]]);//选出最大的价值
}f[k]=a;
}
}
}
int main(){
in();
dp();
cout<<f[v];
return 0;
}