自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(58)
  • 收藏
  • 关注

原创 Word2Vec基本实践

例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。提示:以下是本篇文章正文内容,下面案例可供参考# 定义Skip-Gram模型import torch.nn as nn # 导入neural network# 从词汇表大小到嵌入大小的线性层(权重矩阵)# 从嵌入大小到词汇表大小的线性层(权重矩阵)# 生成隐藏层:[batch_size, embedding_size]# 生成输出层:[batch_size, voc_size]

2024-06-19 20:16:40 389

原创 pycharm中连接远程服务器

主要是使用pycharm连接远程的服务器,使用服务器中的python interpreter,因为网上的blog乱七八糟,所以自己写一个教程,方便之后重复使用。之后按照下面图片标注进行填充。

2024-03-11 17:53:01 1080

原创 ViennaRNA的安装使用

一般需要编译的时候,可以先安装conda环境,安装gcc/g++,安装perl等重要信息.

2023-11-26 03:38:08 1377 1

原创 Ubuntu 22.04.3 LTS中安装singularity

以下这篇blog介绍了singularity容器。浅谈Singularity容器。

2023-11-07 18:56:13 2719

原创 ubuntu 22.04.2 LTS 上安装旧版jekyll所遇到的问题总结

安装基本系统ubuntu的安装链接:https://releases.ubuntu.com/22.04.3/ubuntu-22.04.3-desktop-amd64.isoanaconda3 的安装链接:安装conda 的环境解释遇到的问题3.1 进入_config.yml 所在的路径下,bundle exec jekyll server --port 4001会显示需要run “bundle install“

2023-10-21 20:40:56 571

原创 有效解决Beyond Compare “这个授权密钥已被吊销”的办法_个用

主要是解决beyond compare 在MAC重启后,不能使用的问题,报错:这个授权密钥已被吊销提示:以下是本篇文章正文内容,下面案例可供参考。

2023-07-21 15:31:10 6180

原创 2023-02-27-pymol安装开源

不需要licence进行安装pymol

2023-02-27 22:26:12 299

原创 python27安装报错问题

主要是在python27的环境下安装biopython和numpy。

2023-01-16 00:04:49 228

转载 rosetta中能量函数的学习

为了学习和记录。

2022-11-18 21:10:58 156

原创 20220828-jelkyll在mac中的安装log

在mac上安装jekyll, 搭建静态网站。

2022-08-28 16:40:24 248

原创 gcc的学习及 版本太低如何在conda环境下重新进行安装

/lib64/libstdc++.so.6: version `GLIBCXX_3.4.20' not found 报错

2022-08-03 16:11:55 7948 4

原创 2022-07-19-利用shell去激活conda环境

如何在shell脚本中激活conda环境

2022-07-19 10:18:09 187

原创 2022-06-11-模式匹配(占位符-英文;占位符-中文)

基于匹配的模式机器人的实现,可以进行单个词语匹配,也可以同时进行多个词语匹配。为了实现模板的判断和定义,我们需要定义一个特殊的符号类型,这个符号类型就叫做"variable", 这个"variable"用来表示是一个占位符。例如,定义一个目标: “I want X”, 我们可以表示成 “I want ?X”, 意思就是?X是一个用来占位的符号。如果输入了"I want holiday", 在这里 ‘holiday’ 就是 ‘?X’3、输出占位符所对应的内容-获得匹配变量前提是要求两个字符串结构完全一样

2022-06-11 15:56:58 665

原创 20220530-动态规划算法及Needleman-Wunsch算法

文章目录前言一、动态规划原理1、定义2、特点1)针对机器学习算法而言:不需要大量数据和足够的特征值2)相对于BFS和DFS、贪心算法而言:3)3、切钢材3、代码实现增加装饰器----加快递归速度:二、编辑距离1、定义及原理2、代码实现三、Needleman-Wunsch 算法1、定义2、原理1)得分矩阵--score_matrix2)回溯矩阵3、完整代码实现四、 喝水不忘挖井人(感谢各位大佬给予学习思路)前言本文主要是通过讲动态规划的原理,(最简单的是切钢材),应用于NLP中,常见的是编辑距离,在生物

2022-06-03 15:07:53 1744

原创 2022-04-20-图像数据化原理

学习目标:`图像怎么数字化?:参考文章原文1.参考文章原文2.参考文章原文3.学习内容:图像和像素的关系像素是什么,与分辨率之间的关系图像转化为三维数据,每个数字具体表示什么学习成果:图像和像素的关系,像素是什么,与分辨率之间的关系?参考原文链接像素(pixel)是指由图像的小方格组成的,这些小方块都有一个明确的位置和被分配的色彩数值,小方格颜色和位置就决定该图像所呈现出来的样子。可以将像素视为整个图像中不可分割的单位或者是元素。 不可分割的意思是它不能够再切割成更小单位

2022-05-30 00:12:19 514

原创 2022-05-26-递归加上装饰器,小心bug

文章目录一、原因二、解决方案1.中断出现None2.利用第三函数一、原因装饰器类似闭包,会给函数增加一些额外功能,具体功能可以在CSDN中查任何一篇blog,但是本片文章的blog主要是解决当目标函数(内置函数)是递归函数,该怎么处理???因为直接在递归函数上面增加decorate,会导致decorate也发生递归,所以可以在递归函数和decorate中间加一个其他函数,就是不要中断递归函数,因为防止对象找不到,最后返回None或者增加decorate中的wrap(狸猫)必须增加返回值,直接re

2022-05-27 11:33:13 85

原创 爬虫之爬地铁数据

文章目录前言一、爬取网页的基本步骤二、常见细节问题(返回的对象解释)1、BeautifulSoup解析数据:2、find()与find_all()3、Tag 对象三、实践操作-爬取深圳地铁数据1、爬取深圳的地铁数据(不包含时间)2、爬取深圳地铁数据(包含时间)总结1 网页找内容(找不同(只找一个);找相同(找一类)2 根据返回对象不同,调用不同的方法和属性前言主要是介绍爬取网页的基本步骤,面对对象编程,所以弄清楚返回的对象类型,可以调用相应的方法和属性。参考原文:感谢原文作者提供的思路一、爬取网页

2022-05-20 15:56:43 1801 1

原创 python split() and strip()的区别

问题:split() and strip()的区别split()通过指定分隔符对字符串进行切片,如果参数 num 有指定值,则分隔 num+1 个子字符串。split() 方法语法:str.split(str=“”, num=string.count(str))参数解释:str – 分隔符,默认为所有的空字符,包括空格、换行(\n)、制表符(\t)等。num – 分割次数。默认为 -1, 即分隔所有。返回值:返回分割后的字符串列表。s="abcsdd cnkxlnalndiacj"s_

2022-05-17 16:58:02 117

原创 2022-05-13-协方差和标准协方差

dataframe.cov () vs dataframe.corr()之间的差别:(1)前者表示两个之间的相关性,绝对值越大,相关性越高,当其值>0,表示正相关,其值<0,表示负相关;(2)后者表示无量纲的相关性比较,相关性系数=协方差/两个项目标准差之积。简单参考文章有推理的参考文章...

2022-05-13 17:49:14 115

原创 neighbors.kneighbors_graph的原理和应用

文章目录前言一、实操1.API参数介绍二、基本原理1、只有一个特征(只有一列)2、特征>=2(两列以上数据)总结前言1、学习neighbors.kneighbors_graph的distance (mode)的原理2、neighbors.kneighbors_graph API参数的调试和运用一、实操1.API参数介绍链接: 学习,借鉴参考原文.sklearn.neighbors.kneighbors_graph(X, n_neighbors, *,mode=‘connectivity’

2021-12-19 02:35:04 3353

原创 2021-12-12-机器学习评价指标总结

模块学习

2021-12-12 12:52:28 2462

原创 机器学习基本算法-参数

基本机器学习算法相关重要参数:模型=算法+数据一、分类算法:1、数据特点:要求数据的目标值离散2、分类及重要参数K近邻算法:根据样本与样本的欧式距离计算,n_neighbors需要进行交叉验证和网格搜索,可以通过estimator.scolar()函数验证模型的准确性朴素贝叶斯算法:会计算先验概率,要求历史数据严谨,没有可调参数决策树和随机森林:通过信息熵和信息增益计算根节点(更详细的是根据基尼系数),其中决策树中的min_samples_split=2(默认),min_samples

2021-10-31 21:48:56 969

原创 分类估计器--朴素贝叶斯算法

文章目录前言一、朴素贝叶斯数学知识1. 联合概率和条件概率2.朴素贝叶斯-贝叶斯公式????(????):每个文档类别的概率(某文档类别词数/总文档词数)????(????│????):给定类别下特征(被预测文档中出现的词)的概率????(????1│????)=????????/???? (训练文档中去计算)????????为该????1词在C类别所有文档中出现的次数N为所属类别C下的文档所有词出现的次数????(????1,????2,…) 预测文档中每个词的概率3. 实例化计算4. 拉普拉斯平

2021-10-23 11:10:47 454

原创 回归算法--K近邻算法

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、pandas是什么?二、使用步骤1.引入库2.读入数据总结前言提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。提示:以下是本篇文章正文内容,下面案例可供参考一、pandas是什么?示例:pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。二、使用步骤1.引入库代码

2021-10-23 11:10:06 2061

原创 pandas_练习

目录一、grouby 的练习二、不同年份书的评分情况一、grouby 的练习grouby 将df进行分组,选择某一列形成Series,之后进行画图x轴:range (Series.index)y轴:Series(或Series.value)"""@desc: 店铺排名前十的绘图"""import pandas as pdfrom matplotlib import pyplot as plt#显示所有列pd.set_option('display.max_columns', None)

2021-08-21 22:10:07 121

原创 groupby产生Series和dataframe

目录一、grouby 的使用二、产生dataFrame区别:groupby 对dataFrame 进行分组,产生的对象是DataFram groupby 对象可以1.将其转化为list,进行遍历:2.进行分组和聚合一、grouby 的使用import pandas as pddf=pd.read_csv(r"starbucks_store_worldwide.csv")grouped=df.groupby(by="Country")#DataFram groupby 对象可以分组和聚合#

2021-08-21 12:08:25 817

原创 numpy-基础知识和简单示例

目录numpy 学习大汇总一、创建数组(array)二、指定创建数组的数据类型三、数组的形状四、产生多维数组五、数组之间的计算六、将元组中nan的值转化为该列的平均值七、将元组中nan的值转化为该行的平均值八、汇总两国数据,但是表明两国数据numpy 学习大汇总一个在Python中做科学计算的基础库,重在数值计算,也是大部分PYTHON科学计算库的基础库,多用于在大型、多维数组上执行数值运算。一、创建数组(array)import numpy as npimport randomt1=np.ar

2021-08-15 23:45:11 261

原创 matplotlib_条形图的绘制

学习目标:条形图(plt.bar)横向条形图(plt.barh)学习内容:1.设置条形图的宽度2.设置中文,横轴每个电影名字太长时,可以通过==/n==进行换行或者利用横向条形图3.由于给的是电影的名称,所以x轴可以利用range(len(a))进行取值,之后利用plt.sticks进行换相应的电影名字4.利用plt.barh进行作图时,发现,plt.barh(x,y)其中和plt.bar(x,y)位置一样,但是后边应该是height而非width5.进行横向条形图时,plt.yticks(

2021-08-15 23:26:34 453

原创 matplotlib作图时显示中文错误

前言当利用matplotlib进行绘图时,会发现出现中文时会进行报错。解决方案设置下面参数,设置代码如下import matplotlib.pyplot as pltplt.rcParams['font.sans-serif']=['SimHei']#用来正常显示中文标签plt.rcParams['axes.unicode_minus']=False#用来正常显示负号例子import randomfrom matplotlib import pyplot as pltimport ma

2021-08-05 21:11:54 274

原创 二叉树的创建,添加元素,广度遍历,深度遍历

1.创建树,添加元素的时候,利用add(),利用队列的思想存储数据和添加数据(队列并不是二叉树,只是一种对二叉树数据访问的一种方式)2.遍历二叉树,利用递归思想"""@desc:二叉树的实现,类似于队列取值和增加值:从二叉树中取值,观察是否存在左子树,如果存在,尾部添加左子树,进行后续分析;不存在将左子树指向新节点;观察是否存在右子树,如果存在,尾部添加右子树,进行后续分析,不存在将右子树指向新节点""""""定义新节点:存在元素存储区,左子后继节点,右子后继节点"""class Node

2021-07-27 18:03:23 256

原创 快速排序算法_疑点和思路

目录前言一、快速排序的思路二、快速排序的难点1. low游标和high 游标位置重合时候,停止循环,找打了mid_value的位置2.遍历对象还是原来的alist,不能是新的对象三、快速排序的代码展示前言主要三部分:思路难点具体代码(含有关键部分的注释)一、快速排序的思路将传入的alist 中的第一个数据作为首先排序的数据(mid_value)建立两个游标(low and high),右游标左移开始,之后交换数据,左游标右移,直到两个游标相遇,结束循环,找到 mid_value的位置,此时

2021-07-25 23:08:37 82 1

原创 双向队列的创建和操作

class Deque(): """创建一个空的双端队列""" def __init__(self): self.__list=[] def add_front(self,item): """从队头加入一个item元素""" self.__list.insert(0,item) def add_rear(self,item): """从队尾加入一个item元素""" self.__list.app

2021-07-24 17:23:19 138

原创 队列的创建和操作

class Queue(): """创建一个空的队列""" def __init__(self): self.__list=[] def enqueue(self,item): """往队列中添加一个item元素""" self.__list.append(item) def dequeue(self): """从队列头部删除一个元素""" return self.__list.pop(0)

2021-07-24 17:19:17 179

原创 栈的创建和操作

class Stack():#创建一个空栈 def __init__(self): self.__list=[]#利用顺序表中的List进行实际的存储数据和操作数据,并且进行私有化 def push(self,item): """"添加一个新的元素item到栈顶""" self.__list.append(item)#由于栈的操作特点是先进后出,即添加是在末尾添加 def pop(self): """弹出栈顶元素"""

2021-07-24 17:18:08 321

原创 单向循环链表的学习

class Node: def __init__(self, elem): self.elem = elem self.next = Noneclass Single_cycle_link_list: def __init__(self, node=None): """需要记录首节点的地址信息,所以需要创建一个私有类属性-头节点, 将节点和链表(Sing_link_list)进行连接 """

2021-07-24 15:04:52 40

原创 双向链表的学习

class Node: def __init__(self, elem): self.elem = elem self.next = None self.prev=None#相对于单向链表,多了一个前驱class Double_link_list: def __init__(self, node=None): """需要记录首节点的地址信息,所以需要创建一个私有类属性-头节点, 将节点和链表(Sing_lin

2021-07-24 15:03:23 46

原创 单项链表的操作和学习

class Node: def __init__(self, elem): self.elem = elem self.next = Noneclass Single_link_list: def __init__(self, node=None): """需要记录首节点的地址信息,所以需要创建一个私有类属性-头节点, 将节点和链表(Sing_link_list)进行连接 """ self

2021-07-24 15:01:53 50

原创 栈,堆,字节,字符串知识小结

目录前言一、pandas是什么?二、使用步骤1.引入库2.读入数据总结前言主要介绍一、pandas是什么?示例:pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。二、使用步骤1.引入库代码如下(示例):import numpy as npimport pandas as pdimport matplotlib.pyplot as pltimport seaborn as snsimport warningswarnings.filterwarning

2021-07-22 20:02:40 382

原创 __name__ and “__main__“

目录前言一、__name__?二、__main__?三、__name__=="__main__"写在一起表示什么?四、__name__属性的值什么时候等于"__main__"呢?五、__name__属性的值不是"__main__"时,会是什么?六、总结前言经常在代码中看到if __name__ =="__main: 执行体但是又不懂是什么意思?这里,就出现了,我们此处所要解释的name__和__main一、name?__name__是当前模块的一个属性,属性名称的前后各有两个_修饰

2021-07-09 11:32:09 390

原创 python_文件对象常用属性和方法

目录前言一、os 和 os.path 模块1、os.system 可以帮助我们直接调用系统的命令2、·os.startfile:直接调用可执行文件3、os 模块-文件和目录操作4、os.path 模块5、walk()递归遍历所有文件和目录6、shutil 模块(拷贝和压缩)二、利用递归算法打印文件目录和目录下的文件前言一、os 和 os.path 模块os 模块可以帮助我们直接对操作系统进行操作。我们可以直接调用操作系统的可执行文件、命令,直接操作文件、目录等等。在系统运维的核心基础。1、os.sy

2021-07-06 15:08:16 290

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除