2022-04-20-图像数据化原理

学习目标:

`图像怎么数字化?

参考文章原文1.
参考文章原文2.
参考文章原文3.

学习内容:

  1. 图像和像素的关系
  2. 像素是什么,与分辨率之间的关系
  3. 图像转化为三维数据,每个数字具体表示什么

学习成果:

图像和像素的关系,像素是什么,与分辨率之间的关系?

参考原文链接

像素(pixel)是指由图像的小方格组成的,

  1. 这些小方块都有一个明确的位置和被分配的色彩数值,小方格颜色和位置就决定该图像所呈现出来的样子。
  2. 可以将像素视为整个图像中不可分割的单位或者是元素。 不可分割的意思是它不能够再切割成更小单位抑或是元素,它是以一个单一颜色的小格存在 。

图像转化为三维数据,每个数字具体表示什么

  1. 数值化:
    其中图像数字化,可以形成三维数组,其中从内到外的顺序中,一维表示像素的RGB值(R:red; G:green; B:blue); 二维表示每行像素组成的图像的数值;三维是整个图像。
  2. 通道(RGB):
    通道(channel)是一个传统术语,指图像的一个特定成分。标准数码相机拍摄的照片具有三个通道:红、绿和蓝。你可以将它们想象为三个堆叠在一起的二维矩阵(每种颜色一个),每个矩阵的像素值都在0到255之间。
  3. 图像的灰度级:
    灰度级指黑白显示器中显示像素点的亮暗差别,在彩色显示器中表现为颜色的不同,灰度级越多,图像层次越清楚逼真。注意,灰度值只是表征单色的亮暗程度。
    在彩色图像/RGB图像中,图像是一个三维矩阵,如400×300×3,其中400表示列数,300表述行数,3代表三个分量,也就是R,G,B。
    每一层矩阵(400×300×1/2/3)分别对应R/G/B的灰度值,此处的矩阵仅仅表示对应单色光灰度值,不是彩色的图像。
    而数字图像的本质是一个多维矩阵。一幅图的本质是一个4003003的一个矩阵,说明这个图像有400列,300行,以及在色彩上有三个分量,分别是R、G、B。每个分量单独拿出来都是一个400*300(*1)的矩阵
    如你所见,它们并不是彩色的,而是一幅灰度图像
    对于一副8bit的图像来说,矩阵元素的取值范围是从0-255(0 - 2^8-1)
    矩阵中的元素对应我们所说的像素(pixel),其值即该像素的灰度值,数值越大,像素的颜色越‘白/浅’;数值越小,像素的颜色越’黑/深‘ 。
  4. 图像的深度
    图像中像素点占得bit位数,就是图像的深度,比如:二值图像:图像的像素点不是0 就是1 (图像不是黑色就是白色),图像像素点占的位数就是 1 位,图像的深度就是1,也称作位图。灰度图像:图像的像素点位于0-255之间,(0:全黑,255代表:全白,在0-255之间插入了255个等级的灰度)。2^8=255,图像的深度是8。依次轮推,我们把计算机中存储单个像素点所用的 bit 位称为图像的深度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值