烦人,导师让做机器学习,
我的java路断了,
好吧,
干一行爱一行,
以后学人工智能。
算法1 knn 分类算法
knn原理是根据邻居值来判断,他需要把所有数据加标签 然后排序,当预测新数据时,先算新数据,然后跟所有数据排序,排完序看看它周围是什么标签,那么它自己也是什么。其中X是数据,y是目标值,看X跟y有什么关联,算他俩之间的“距离”。(重点在数据处理上)
没有训练,就是把所需要预测的数据加入,然后将其跟所有数据求距离,找到最近的几个点,投票选择是什么类型。
例如:1,对电影类别判断。现对先对武打镜头跟接吻镜头的距离根据科学家的神奇宝贝算出来,再排序。 knn.fit(数据,目标值)
2,对手写数字识别。他这个距离的计算是计算的像素。算完之后加标签,排序。预测新样本。具体怎么算的我还尚不清楚。。。。
调就完事了。如果导入自己写的数字,注意调整shape,使它跟训练样本的shape一样。