二维-三维基础算法

本文详细介绍了如何通过计算空间三角形的顶点A(x1,y1,z1),B(x2,y2,z2),C(x3,y3,z3)之间的向量AB和AC的叉积,来求得面积,步骤包括向量定义、叉积运算及面积公式S=0.5*|AB×AC|。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 一、三维空间计算

以下算法均基于空间三维点实现,其中平面与直线均是三维空间中的平面与直线,表达方式如下:

平面方程:ax+by+cz+d=0

直线方程:(x-p_x)/s_x=(y-p_y)/s_y=(z-p_z)/s_z

直线方程由直线上一点及其方向向量描述直线,其中(p_x,p_y,p_z)为直线上一点,(s_x,s_y,s_z)为直线的方向向量

1、计算空间三角形面积

空间三角形三个顶点坐标为A(x1,y1,z2),B(x2,y2,z2),C(x3,y3,z3)

计算过程如下:

(1)计算向量AB,AC

(2)计算AB×AC

(3)则S=0.5*|AB×AC|

2、点线距离

3、点面距离

4、面面夹角

5、面面交线

两个平面的方程分别为:a_1x+b_1y+c_1z+d_1=0;a_2x+b_2y+c_2z+d_2=0

计算过程如下:

(1)两个平面的法向量为n_1=(a_1,b_1,c_1),n_2=(a_2,b_2,c_2),计算法向量叉乘c_p,若\left | c_p \right |=0,则两个平面不存在交线;

(2)若两平面存在交线,记交线方程为(x-p_x)/s_x=(y-p_x)/s_y=(z-p_z)/s_z;则

s=c_p

(3)计算交线上一点,获得交线方程

6、线面交点

直线方程为:ax+by+cz+d=0

平面方程为:(x-p_x)/s_x=(y-p_y)/s_y=(z-p_z)/s_z

计算过程如下:

(1)使用平面法向量及直线方向向量点积值,判断直线与平面是否存在交点,若点积值=0,则进一步判断直线是否在平面上,若直线在平面上,则可根据需求确定是否取直线上任意一点作为交点结果;

dot=a*s_x+b*s_y+c*s_z

(2)当直线与平面存在交点时,根据公式计算出交点坐标(r_x,r_y,r_z)

t=\frac{-(a*p_x+b*p_y+c*p_z+d)}{dot}

r_x=p_x+t*s_x

r_y=p_y+t*s_y

r_z=p_z+t*s_z

7、线线交点

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值