weixin_44729115
码龄6年
关注
提问 私信
  • 博客:20,145
    动态:11
    20,156
    总访问量
  • 23
    原创
  • 296,273
    排名
  • 24
    粉丝
  • 0
    铁粉
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:江苏省
  • 加入CSDN时间: 2019-03-05
博客简介:

weixin_44729115的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    1
    当前总分
    71
    当月
    2
个人成就
  • 获得40次点赞
  • 内容获得8次评论
  • 获得85次收藏
创作历程
  • 1篇
    2024年
  • 1篇
    2022年
  • 5篇
    2021年
  • 16篇
    2020年
成就勋章
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

368人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

mysql 安装

前言本文主要说明Mysql8.x版本的在Windows系统的安装过程。
原创
发布博客 2024.03.11 ·
349 阅读 ·
10 点赞 ·
0 评论 ·
7 收藏

typora免费版 适用于windows系统

发布资源 2022.12.29 ·
zip

springboot常用注解

发布资源 2022.12.28 ·
docx

本地连接华为云服务器上的数据库

华为云 docker mysql
原创
发布博客 2022.12.18 ·
357 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

Python+Neo4j知识图谱环境搭建

知识图谱构建的工具主要包含两个部分Neo4j 用于存储实体和关系Django python的Web框架Django安装和使用pip install djangoimport djangoNeo4j去Neo4j官网下载安装包下载后解压并进入bin目录启动以github上一农业知识图谱的demo为例讲解搭建过程按照github上readme.md上的要求将实体和关系的数据文件 放入import文件夹下并在输入框中输入语句导入数据数据导入完成后启动Django服务
原创
发布博客 2021.05.20 ·
1154 阅读 ·
1 点赞 ·
0 评论 ·
12 收藏

Document-Level Relation Extraction with Adaptive Thresholding and Localized Context Pooling

摘要
原创
发布博客 2021.05.13 ·
466 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

TurboNLP部署

1 安装 pytorch-gpu 选定版本后复制 run this command中的命令行 到控制台安装2. 使用anaconda创建虚拟环境,按照readme中的提示 安装相关包配置turboTransformer使用docker安装镜像
原创
发布博客 2021.02.18 ·
137 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Anaconda使用教程及jupyter内核操作

下载安装此部分教程很多,所以本文不再赘述,需要提醒的是在Ubuntu环境下安装时,提示是否将conda加入环境变量时,一定要选是使用教程虚拟环境相关操作创建虚拟环境conda create -n yourname python==yourversion环境搭建好之后就可以在里面尽情的配置你想要的东西了删除虚拟环境conda remove -n yourenv激活虚拟环境source activate yourenv退出虚拟环境source deactivate
原创
发布博客 2021.01.05 ·
819 阅读 ·
5 点赞 ·
0 评论 ·
7 收藏

Joint Extraction of Entities and Overlapping Relations Using Position-Attentive Sequence Labeling论文

摘要联合实体抽取使用一个模型进行实体和关系检测。本文的方法是根据问题单词的位置p 直接标注实体和关系的标签,在其他位置识别与前者有关系的实体。作者首先设计了一种标记机制给n个单词的句子生成 n 个标签序列,然后提出基于位置注意力机制了为每个查询位置生成不同的句子表示来对n标签序列建模。这样的话,我们就可以抽取到所有的实体和他们的类型,还有重叠的关系。文章的创新点和贡献提出一种标注策略,可以同时展示实体的类型和重叠的关系提出一个基于位置注意的机制,根据查询位置p生成不同的位置感知语句表示,用于.
原创
发布博客 2020.12.30 ·
291 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Graph Neural Networks with Generated Parameters for Relation Extraction 论文阅读

创新点传统方法对于边的构造使用的是拉普拉斯矩阵,在本文中使用的是生成的参数替换拉普拉斯矩阵。数据集利用维基百科标注实体和关系,并使用Stanford CoreNLP 和 HeadTime抽取实体和时间。针对一个实体对之间存在多个关系的情况过滤,针对一个句子之间的实体少于3个的情况过滤。模型架构编码模块生成的参数相当于原始的拉普拉斯矩阵传播模块中的A来自编码模块分类模块...
原创
发布博客 2020.12.30 ·
386 阅读 ·
0 点赞 ·
3 评论 ·
1 收藏

docker相关操作

docker 安装sudo apt-get install \ apt-transport-https \ ca-certificates \ curl \ software-properties-common允许使用httpcurl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -添加docker官方curl -fsSL https://mirrors.ustc.edu
原创
发布博客 2020.12.30 ·
119 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

图卷积神经网络入门

1. 为什么要使用图卷积神经网络原因: 现实生活中存在着大量拓扑结构的数据,比如图等非欧式数据,传统的卷积操作只适用于欧式空间的数据(图像等);因此需要适用于图上的卷积操作。2. 怎么使用图卷积类比CNN中的卷积,传统卷积是对中心点周围的点进行加权后相加得到中心点的表示,推广到图中就是将用周围节点来表示当前节点。卷积的定义式:傅里叶变换:傅里叶变换(Fourier Transform, FT)会将一个在空域(或时域)上定义的函数分解成频域上的若干频率成分。换句话说,傅里叶变换可以将一个函数
原创
发布博客 2020.12.30 ·
287 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

Git基本使用 持续补充

配置用户信息git config --global user.name "lxy"git config --global user.email "18261195602@163.comgit config --list初始化仓库mkdir git_practisegit init git status # 查看目录状态echo "hello,git" > welcome.html # 创建内容为 hello,git的 welcome.html文件git add welcome.ht
原创
发布博客 2020.09.12 ·
258 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Lunix操作

pwd 当前目录ls 显示文件ls -a 显示 所有文件wenjianls -a ~ 显示所有隐藏文件权限 用户所有者 文件大小 修改时间戳  文件名如果 test不存在 使用 -p删除文件夹下所有文件和子目录删除一个目录-i 带有交互的询问通配符匹配...
原创
发布博客 2020.09.12 ·
1018 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

对于Transformer中的mask理解

概述transformer中的mask操作,可以分成encoder端和decoder端Enocoder中的mask首先确定mask的形状是 batch_size*seq_length对于小于最大长度的句子进行补0操作,对于大于最大长度的句子进行截断操作。虽然对少于最大长度的句子进行了补零操作但是这些0仍然会参与注意力分数的计算。这里需要将mask中的0变成负无穷,1变成0,与计算的注意力矩阵相加,原来有单词的注意力不变,没有单词的位置变换成负无穷,之后在进行softmax运算decod
原创
发布博客 2021.05.13 ·
2797 阅读 ·
6 点赞 ·
0 评论 ·
5 收藏

Ubuntu系统下配置haskell语言环境stack

大部分的操作指南都在官网上可以找到,下面的两个问题可能是出现最多的更换国内镜像源###ADD THIS IF YOU LIVE IN CHINApackage-indices: - download-prefix: http://mirrors.tuna.tsinghua.edu.cn/hackage/package/ hackage-security: keyids: - 0a5c7ea47cd1b15f01f5f51a33adda7e655bc0f
原创
发布博客 2020.05.29 ·
1583 阅读 ·
5 点赞 ·
0 评论 ·
4 收藏

Integrating Deep Learning with Logic Fusion for Information Extraction 论文学习

摘要信息抽取的目的是从输入文本中产生结构化的信息。针对信息抽取已经提出了很多尝试比如特征工程或深度学习。然而,他们中的大多数都没能将这种复杂关系和任务本身联系起来,这是很重要的。比如说,两个实体之间的关系和他们的实体类型有着很大的相关性,这种依赖关系可以被看做是可以高效表达逻辑规则的复杂的约束。为了将逻辑推理能力和学习能力结合,我们提出了将以一阶逻辑形式的逻辑知识整合,以端到端的方式进行联合训练。整合的框架可以通过逻辑规则增强带有知识正则化的神经元输出,同时更新逻辑规则的权重来符合训练数据的特征。我们证.
原创
发布博客 2020.05.18 ·
436 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Modeling Relational Data with Graph Convolutional Networks 论文学习

摘要知识图谱有着各种各样的应用,包括问答系统和信息检索。尽管在知识图谱的创建和维护上投入了大量的努力,但是仍然是不完整的。我们引入了关系图卷积神经网络,并且将它们应用到两个标准知识库完成的任务上:1 链接预测(复原缺失的事实) 2。 实体分类(复原缺失的实体属性)。R-GCNs是一种运行在图上的神经网络,用于解决现实知识库的多关系数据特征。我们证明了R-GCNs作为一种实体分类的独立模型的有效...
原创
发布博客 2020.05.18 ·
299 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

Multi-Source Domain Adaptation for Text Classification via DistanceNet-Bandits论文学习

摘要目标域上的学习算法的域适应性能是其源域的误差和两个域的数据分布的散度度量。我们在NLP任务的上下文任务中研究了各种基于距离的方法,根据样本估计来描述域之间的差异。我们首先进行了分析实验来展示哪种距离度量方法可以最好地区分样本来自相同领域还是不同领域,和实际结果相关。接下来,我们研究了一种叫做DistanceNet的模型,这个模型使用这些距离度量的方法,或者将这些度量方法混合,作为一种额外的...
原创
发布博客 2020.05.18 ·
586 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

Deep Session Interest Network for Click-Through Rate Prediction论文学习

用于预测点击率的深度会话神经网络摘要点击率在很多工业应用中起着重要作用,比如在线广告和推荐系统。如何从用户的行为序列中捕捉用户动态的、不断变化的兴趣,仍然是CTR预测中一个不断研究的课题。然而,多数已有的研究忽视了这些序列的内在结构,这些序列由会话组成,会话是用户行为,与它们发生的时间相分离。我们发现用户行为在同一个会话中是用于预测点击率的深度会话神经网络摘要点击率在很多工业应用中起着重要作用,比如在线广告和推荐系统。如何从用户的行为序列中捕捉用户动态的、不断变化的兴趣,仍然是CTR预测中一个不断研
原创
发布博客 2020.05.18 ·
239 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多