先导步骤
- 本人的部署是基于Ubuntu 系统, 本Ubuntu系统已经配有Cuda 10.1 及对应的cudnn,在此就不详细介绍cuda及cudnn的相关配置
- Ubuntu系统中已经配置好docker,在此也不做详细介绍. 在此需要docker的版本,部分docker的版本是需要另外配置nvidia-docker的.本机的docker版本是
不需要另外配置nvidia-docker即可直接使用gpu
正文
配置turboTransformer
- 使用docker安装镜像,下载turboTransformer提供的官方镜像
- 建立宿主机和容器的公共目录,以供文件传输
docker run -it -v 宿主机目录:容器目录 --name your_name image_name - 运行turboTansformer提供的demo (bert_example.py)
此demo的目的是比较torch及turbo的运行速度