TurboNLP部署

先导步骤

  1. 本人的部署是基于Ubuntu 系统, 本Ubuntu系统已经配有Cuda 10.1 及对应的cudnn,在此就不详细介绍cuda及cudnn的相关配置
  2. Ubuntu系统中已经配置好docker,在此也不做详细介绍. 在此需要docker的版本,部分docker的版本是需要另外配置nvidia-docker的.本机的docker版本是
    在这里插入图片描述
    不需要另外配置nvidia-docker即可直接使用gpu

正文

配置turboTransformer

  1. 使用docker安装镜像,下载turboTransformer提供的官方镜像
    在这里插入图片描述
  2. 建立宿主机和容器的公共目录,以供文件传输
    docker run -it -v 宿主机目录:容器目录 --name your_name image_name
  3. 运行turboTansformer提供的demo (bert_example.py)
    在这里插入图片描述
    此demo的目的是比较torch及turbo的运行速度
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值