蓝桥杯练习系统试题 入门训练 Fibonacci数列
资源限制:
时间限制:1.0s 内存限制:256.0MB
问题描述:
Fibonacci数列的递推公式为:Fn=Fn-1+Fn-2,其中F1=F2=1。
当n比较大时,Fn也非常大,现在我们想知道,Fn除以10007的余数是多少。
输入格式:
输入包含一个整数n。
输出格式:
输出一行,包含一个整数,表示Fn除以10007的余数。
说明:在本题中,答案是要求Fn除以10007的余数,因此我们只要能算出这个余数即可,而不需要先计算出Fn的准确值,再将计算的结果除以10007取余数,直接计算余数往往比先算出原数再取余简单。
输入样例 | 输出样例 |
---|---|
10 | 55 |
22 | 7704 |
数据规模与约定
1 <= n <= 1,000,000。
#include<iostream>
using namespace std;
int main() {
int n = 0;
int Remainder = 0;
int k1 = 1, k2 = 1;
cin >> n;
if (n == 1 || n == 2)
{cout << 1; return 0;}
for (int i = 2; i < n; i++) {
Remainder = k1+k2;
if (sum > 10007)
Remainder = Remainder - 10007;
k1 = k2;
k2 = Remainder;
}
cout << Remainder;
return 0;
}
解题思路:
若先求得Fn的准确值,下一步的操作则是将Fn的值减去若干个10007。而Fn的值是由Fn的一般项相加而得,我们不妨可以在一般项上面先减去10007,然后再将减下来的余数进行相加。