YouTube热门视频的分析

本文分析了来自Kaggle的YouTube数据,针对CA国家的热门视频进行预处理和探索性分析。通过描述性分析、相关性分析及gropby分组函数,揭示了浏览量最多的频道、类别频率以及浏览量与点赞数的强正相关性。结论显示,Music、Entertainment和Movies类别最受关注。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 概述

Youtube视频网站是美国最大的视频分享平台,youtube官网在中国也有很多用户。数据来源于kaggle网站,本文主要选取CA国家,探究YouTube在CA国家Top20热门视频数据。

2 数据的预处理

1、导包

 import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt`
 import seaborn as sns
 import json
 from datetime import datetime
 import pandas as pd
 data = pd.read_csv("3D Objects/CAvideos.csv",index_col=0)

2、查看数据集

data

在这里插入图片描述

data["trending_date"]``

在这里插入图片描述
我们发现trending_date日期格式不一样,所以要对其进行日期格式的转化,这里我们用到datetime函数

data["trending_date"] = pd.to_datetime(data["trending_date"],format ="%y.%d.%m")

同理pubulish_time也一样

data["publish_time"] = pd.to_datetime(data["publish_time"],format = "%Y-%m-%dT%H:%M:%S.%fZ")
data["category_id"] = data["category_id"].astype(str)#转换成字符型

处理后的data

data.head()

在这里插入图片描述
对数据进行简单描述:
data.info()
在这里插入图片描述
从数据的初始描述可以得出该数据总共有15个指标,共有40881行记录
,且description有缺失值。
由于数据原本量就很大,且缺失的数占少数,因此可以对数据有缺失的行进行删除。

data = data.dropna()#删除有缺失值的行

在这里插入图片描述
通过对缺失值的处理,我们得到我们的完整的数据集。接下来我们对数据集中数值型变量做一个描述数据表,得到最初的对数据集的了解
在这里插入图片描述

接下来我们导入json文件,让其与category匹配

id_to_category = {
   }
with open (r"C:\Users\Desktop\4549_466349_bundle_archive/CA_category_id.json") as f:
    js = json.load(f)
    for category 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值