Agent实例,白话解说助你快速理解
前言
Agent(智能体)是一种能够感知环境、自主决策并执行动作的智能实体。其本质是通过算法和模型模拟人类“思考-行动”的闭环过程,具备目标导向性和环境交互性。在人工智能领域,Agent特指基于大模型(如GPT、Qwen等)构建的智能程序,能够通过自然语言交互完成复杂任务 。在本博客前三节进行白话解释其内容。
关键特征:
自主性:无需人工干预,独立规划任务步骤(例如拆解“规划旅行”为查机票、订酒店等子任务)。
工具调用能力:通过API连接外部工具(如地图、数据库),实现“动手操作”(如调用订票系统完成预订) 。
记忆与学习:短期记忆保存对话上下文,长期记忆存储用户偏好或业务数据(如历史订单信息) 。
基于大模型的Agent通常包含以下核心模块:
规划(Planning)
- 功能:分解任务、制定策略(如将“生成工作报告”拆解为数据收集、整理、提交等步骤)。
- 技术实现:思维链(CoT)逐步推理,或ReAct框架结合推理与工具调用 。
记忆(Memory)
- 短期记忆:保存当前对话上下文(如用户询问订单状态时的会话记录)。
- 长期记忆:通过向量数据库存储业务知识(如企业报销政策文档) 。
工具(Tools)
- 感知类工具:获取外部信息(如RAG检索企业知识库、调用天气API)。
- 执行类工具:完成具体操作(如调用支付接口完成扣款) 。
行动(Action):决策后执行操作,例如生成报告并自动提交至系统,或控制机器人抓取物体
1.Agent的构成——从“大脑”到“工具包”
如果把Agent(智能体)比作一个“人”,那么它的核心能力离不开三个关键组件:大模型基座(大脑)、RAG(外接知识库)、工具调用(手脚)。这三者分工明确,又紧密配合,共同完成复杂任务。
- 大模型基座:Agent的“通用知识库”
是什么:大模型(如Qwen、DeepSeek、GPT)是Agent的核心“大脑”,它通过学习海量数据,掌握语言理解、逻辑推理、常识判断等通用能力。
能干啥:直接回答常见问题(比如“如何做西红柿炒鸡蛋”)、分析用户意图(比如“帮我写个工作总结”)、规划任务步骤(比如拆解“策划一场旅行”的需求)。
- RAG:Agent的“实时外挂资料库”
是什么:RAG(Retrieval-Augmented Generation,检索增强生成)就像给Agent配了一个“移动硬盘”,当大模型遇到知识盲区时,它能快速检索外部数据(如企业文档、最新新闻)来补充答案。
能干啥:回答专业问题(比如“公司2024年报销政策是什么”)、提供实时信息(比如“今天北京飞上海的航班延误情况”)。
- 工具调用:Agent的“手脚”
是什么:Agent可以通过API调用外部工具,比如查天气、订机票、发邮件,甚至控制智能家居。
能干啥:从“动嘴”升级到“动手”。例如用户说“明早8点提醒我开会”,Agent不仅理解时间,还会调用日历工具添加提醒。
三者的关系:一个形象的例子
场景:你问Agent:“我想去上海迪士尼玩,帮我规划一个预算5000元的3天行程,要包含最新开的景点。”
大模型基座:先理解任务本质(规划旅游、控制预算、包含新景点),拆解出“查票价、选酒店、排路线”等子任务。
RAG:检索迪士尼官网的最新活动信息,确保推荐的是刚开放的“疯狂动物城”园区。
工具调用:访问机票比价接口找低价航班,调用地图API计算交通时间,最终生成带价格和链接的详细攻略。
一句话总结:大模型负责“想明白要做什么”,RAG负责“找到最新资料”,工具负责“把事情办成”。
2.实例拆解——看Agent如何解决实际问题
案例:用Agent订一家“适合带老人吃的杭州餐厅”
用户需求:“下周末带70岁父母去杭州玩,推荐一家西湖边适合老人吃的餐厅,要清淡口味,人均200以内,并且帮我订位。”
Agent的工作流程:
大模型基座解析意图
识别关键信息:西湖附近、适合老人、清淡、预算、订位。
推理潜在需求:餐厅有无台阶(老人腿脚不便)、菜品是否少油少盐。
RAG检索补充信息
从点评网站抓取西湖周边餐厅数据,筛选出评分4.5以上、有“无障碍设施”标签的店家。
检查最新评论,排除“近期服务差”或“已歇业”的选项。
工具调用执行操作
调用地图API计算用户酒店到餐厅的距离,确保步行15分钟内可达。
接入订座系统,自动填写人数、时间、备注“需要一楼座位”。
生成最终结果
回复用户:“推荐楼外楼(孤山路店),主打杭帮菜,有清蒸鲈鱼、龙井虾仁等清淡菜品。已帮您预订周六晚6点4人桌,一楼靠窗(无台阶)。人均180元,点击确认订位信息。”
总结
Agent不是“魔法黑盒”,而是一个分工明确的智能团队:大模型像经验丰富的项目经理,RAG像随时查资料的助理,工具调用像跑腿的执行人员。三者配合,把模糊的需求变成可落地的方案。
3.Agent在商业场景中具体应用举例
Agent在商业场景中的应用非常广泛,它能够通过整合大模型基座、RAG和工具调用,帮助企业提升效率、优化用户体验、降低成本。以下是一些具体的应用场景和实例:
- 客户服务与支持
应用场景:
智能客服:Agent可以代替人工客服,处理常见问题,如订单查询、退换货政策、产品使用指南等。
个性化推荐:根据用户历史行为和偏好,推荐相关产品或服务。
实例:
用户问:“我的订单号12345现在到哪了?”
Agent工作流程:
大模型理解用户意图(查询物流状态)。
调用物流API获取实时信息。
回复用户:“您的订单已到达上海转运中心,预计明天送达。”
- 销售与营销
应用场景:
线索筛选与跟进:Agent可以自动分析潜在客户信息,生成个性化跟进方案。
营销文案生成:根据目标受众特点,自动生成广告文案或邮件内容。
实例:
企业需要向新用户发送促销邮件。
Agent工作流程:
大模型分析用户画像(如年龄、兴趣)。
调用CRM系统获取用户数据。
生成个性化邮件:“亲爱的用户,我们发现您对户外装备感兴趣,现在购买享受8折优惠!”
- 企业内部协作
应用场景:
会议安排与记录:Agent可以自动协调参会者时间,生成会议纪要。
任务管理:根据项目需求,分配任务并跟踪进度。
实例:
团队需要安排下周的产品评审会。
Agent工作流程:
大模型识别参会者名单和时间偏好。
调用日历工具查找空闲时段。
发送邀请:“会议已定于下周二下午3点,会议链接已生成。”
- 数据分析与决策支持
应用场景:
数据可视化:Agent可以自动生成报表和图表,帮助管理者快速理解业务状况。
趋势预测:基于历史数据,预测未来销售、库存需求等。
实例:
管理者需要了解上季度的销售表现。
Agent工作流程:
大模型识别需求(生成销售报表)。
调用数据库获取销售数据。
生成可视化图表并总结:“上季度销售额同比增长15%,华东地区表现最佳。”
- 供应链与物流管理
应用场景:
库存优化:Agent可以实时监控库存水平,自动补货或调整采购计划。
物流调度:优化配送路线,降低运输成本。
实例:
仓库库存即将低于安全水平。
Agent工作流程:
大模型识别问题(库存不足)。
调用库存管理系统检查数据。
自动生成采购订单并通知供应商:“请紧急补货1000件商品A。”
- 金融服务
应用场景:
智能投顾:Agent可以根据用户风险偏好,提供投资建议。
风险管理:实时监控交易数据,识别异常行为。
实例:
用户问:“我有10万元,想投资低风险产品。”
Agent工作流程:
大模型理解用户需求(低风险投资)。
调用金融产品数据库筛选合适选项。
回复:“推荐货币基金A,年化收益率3.5%,风险评级为低。”
- 医疗与健康
应用场景:
智能问诊:Agent可以根据用户描述的症状,提供初步诊断建议。
健康管理:跟踪用户健康数据,生成个性化健康计划。
实例:
用户问:“我最近总是头晕,可能是什么原因?”
Agent工作流程:
大模型分析症状(头晕)。
调用医疗知识库匹配可能原因。
回复:“可能与低血糖、贫血或疲劳有关,建议尽快就医检查。”
- 教育培训
应用场景:
个性化学习:Agent可以根据学生水平,推荐适合的学习内容和练习。
自动批改:快速批改作业,提供反馈。
实例:
学生提交了一篇英语作文。
Agent工作流程:
大模型分析作文内容(语法、词汇、逻辑)。
调用评分标准进行评估。
生成反馈:“作文逻辑清晰,但需注意时态一致性,得分85分。”
4.基于Python和 LangChain 框架的完整 Agent 代码示例
涵盖工具调用、RAG(检索增强)和大模型协作。代码可直接运行(需替换API密钥),并包含详细注释。
环境准备
pip install langchain langchain-openai wikipedia
完整代码示例
from langchain.agents import AgentExecutor, create_tool_calling_agent
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
from langchain_community.tools import WikipediaQueryRun
from langchain_community.utilities import WikipediaAPIWrapper
from typing import Annotated
import math
# 配置OpenAI API密钥(替换成你自己的)
import os
os.environ["OPENAI_API_KEY"] = "sk-your-key-here"
# --------------------------
# 步骤1:定义工具(Agent的“手脚”)
# --------------------------
# 工具1:计算器(自定义工具)
def calculate_budget(
total_money: Annotated[float, "总预算"],
days: Annotated[int, "旅行天数"]
) -> str:
"""根据总预算和天数计算每日开销"""
daily = total_money / days
return f"每日预算:{daily:.2f}元,建议住宿≤{daily*0.4:.2f}元,餐饮≤{daily*0.3:.2f}元"
# 工具2:维基百科查询(预置工具)
wiki_tool = WikipediaQueryRun(api_wrapper=WikipediaAPIWrapper())
# 工具列表(Agent可调用的所有工具)
tools = [
{
"name": "calculate_budget",
"func": calculate_budget,
"description": "旅行预算计算器,输入总金额和天数,返回每日开销建议"
},
{
"name": "wikipedia",
"func": wiki_tool.run,
"description": "查询城市、景点、历史文化的背景知识"
}
]
# --------------------------
# 步骤2:构建大模型基座(Agent的“大脑”)
# --------------------------
llm = ChatOpenAI(model="gpt-3.5-turbo")
# --------------------------
# 步骤3:定义Agent工作流程
# --------------------------
prompt = ChatPromptTemplate.from_messages([
("system", "你是一个旅行规划助手,需要调用工具解决问题。"),
("user", "{input}")
])
# 创建Agent
agent = create_tool_calling_agent(llm, tools, prompt)
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
# --------------------------
# 步骤4:运行示例
# --------------------------
def run_agent_example():
# 示例问题:规划北京3日游
query = "我想带父母去北京玩3天,总预算5000元。请推荐景点并计算每日开销,再介绍故宫的历史。"
# 执行Agent
response = agent_executor.invoke({"input": query})
print("\n===== 最终回答 =====")
print(response["output"])
if __name__ == "__main__":
run_agent_example()
代码解析
1. 工具定义
- 计算器工具:
calculate_budget
根据总预算和天数分配每日开销。 - 维基百科工具:使用预置的
WikipediaQueryRun
查询百科知识(RAG功能的简单实现)。
2. 大模型基座
- 使用 OpenAI 的
gpt-3.5-turbo
作为“大脑”,负责理解问题、决策工具调用顺序。
3. 运行流程
- 用户提问后,大模型先解析问题:“需要预算计算 + 景点推荐 + 故宫历史”。
- 工具调用:
- 调用
calculate_budget(5000, 3)
计算每日预算。 - 调用
wikipedia("北京景点")
获取景点信息。 - 调用
wikipedia("故宫历史")
获取历史介绍。
- 调用
- 大模型整合工具返回的结果,生成最终回答。
示例输出(简化版)
===== 最终回答 =====
好的!为您规划北京3日游:
1. 预算分配:
每日预算:1666.67元,建议住宿≤666.67元,餐饮≤500元
2. 推荐景点:
- 故宫(必去)
- 天安门广场
- 颐和园
- 八达岭长城
3. 故宫历史:
故宫始建于明朝永乐四年(1406年),是明清两代的皇家宫殿,占地72万平方米...
关键点总结
- 工具定义:通过函数和描述告诉Agent“能做什么”。
- RAG实现:通过Wikipedia工具实现知识检索(实际场景可替换为企业文档库)。
- 链式调用:Agent自动决定何时调用工具,何时用大模型生成内容。
可尝试修改 query
的内容(例如换成“上海4日游预算8000元”),观察Agent如何动态调用工具!