ChromaDB调用BGE模型的两种实践方式

前言

在语义搜索、知识库构建等场景中,文本向量化(Embedding)是核心技术环节。作为一款开源的向量数据库,ChromaDB允许开发者通过自定义嵌入函数灵活对接各类模型。本文将详细介绍两种基于BGE模型的实现方案:​​远程API调用​​与​​本地模型部署​​,并解析它们的应用场景与实现细节。

1.chromadb调用BGE模型api

此api接口是Ollama接口方式:

关键点解析:

​​API服务对接​​:通过HTTP POST请求调用部署在9.1.47.89:11434的Ollama服务
​​模型指定​​:使用bge-m3:latest模型的最新版本
​​超时控制​​:设置30秒超时避免长期阻塞
​​异常处理​​:非200状态码时抛出详细错误信息

import requests
from chromadb.api.types import Documents, EmbeddingFunction, Embeddings

class MyEmbeddingFunction(EmbeddingFunction):
    def __call__(self, texts: Documents) -> Embeddings:
        # 调用远程Ollama服务的BGE-M3模型
        response = requests.post(
            "http://9.1.47.89:11434/v1/embeddings",
            json={
                "model": "bge-m3:latest",
                "input": texts
            },
            timeout=30  # 增加超时设置
        )
        
        if response.status_code == 200:
            return [vec['embedding'] for vec in response.json()['data']]
        else:
            raise Exception(f"Embedding API调用失败: {response.text}")

# 初始化自定义嵌入函数
ef = MyEmbeddingFunction()

注意不同版本之间的访问方式可能不一致。“http://9.1.47.89:11434/v1/embeddings”,可修改为"http://9.1.47.89:11434/api/embeddings"。

[vec[‘embedding’] for vec in response.json()[‘data’]]中的"data"可修改为“embeddings”。 都可进行尝试。

2.调用本地模型

from chromadb.api.types import Documents, EmbeddingFunction, Embeddings
from sentence_transformers import SentenceTransformer
model_path = "emmodel/bge-large-zh-v1.5"
model = SentenceTransformer(model_name_or_path=model_path)

class MyEmbeddingFunction(EmbeddingFunction):
    def __call__(self, texts: Documents) -> Embeddings:
        embeddings = [model.encode(x).tolist() for x in texts]
        return embeddings

ef = MyEmbeddingFunction()

关键点解析:
​​本地模型加载​​:使用sentence-transformers库加载预训练模型
​​路径指定​​:从emmodel/目录加载bge-large-zh-v1.5模型文件
​​批量编码​​:对输入文本列表进行并行向量化

模型准备:

# 下载官方模型
git clone https://www.modelscope.cn/company/BAAI/bge-large-zh-v1.5.git

# 或使用huggingface-hub
from huggingface_hub import snapshot_download
snapshot_download(repo_id="BAAI/bge-large-zh-v1.5")
### 部署 Stable Diffusion 的准备工作 为了成功部署 Stable Diffusion,在本地环境中需完成几个关键准备事项。确保安装了 Python 和 Git 工具,因为这些对于获取源码和管理依赖项至关重要。 #### 安装必要的软件包和支持库 建议创建一个新的虚拟环境来隔离项目的依赖关系。这可以通过 Anaconda 或者 venv 实现: ```bash conda create -n sd python=3.9 conda activate sd ``` 或者使用 `venv`: ```bash python -m venv sd-env source sd-env/bin/activate # Unix or macOS sd-env\Scripts\activate # Windows ``` ### 下载预训练模型 Stable Diffusion 要求有预先训练好的模型权重文件以便能够正常工作。可以从官方资源或者其他可信赖的地方获得这些权重文件[^2]。 ### 获取并配置项目代码 接着要做的就是把最新的 Stable Diffusion WebUI 版本拉取下来。在命令行工具里执行如下指令可以实现这一点;这里假设目标路径为桌面下的特定位置[^3]: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git ~/Desktop/stable-diffusion-webui cd ~/Desktop/stable-diffusion-webui ``` ### 设置 GPU 支持 (如果适用) 当打算利用 NVIDIA 显卡加速推理速度时,则需要确认 PyTorch 及 CUDA 是否已经正确设置好。下面这段简单的测试脚本可以帮助验证这一情况[^4]: ```python import torch print(f"Torch version: {torch.__version__}") if torch.cuda.is_available(): print("CUDA is available!") else: print("No CUDA detected.") ``` 一旦上述步骤都顺利完成之后,就可以按照具体文档中的指导进一步操作,比如调整参数、启动服务端口等等。整个过程中遇到任何疑问都可以查阅相关资料或社区支持寻求帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值