量化投资分析平台 迅投 QMT(三)字典数据下载后读取成Dataframe形式

迅投 QMT

我目前在使用

两个月前(2024年4月)迅投和CQF有一个互动的活动,进行了平台的一个网上路演,刚好我也去听了,感觉还是挺不错的。后来与“客服麻瓜”进行了对QMT的深入了解和使用,最后决定买了他们的服务。注册就可以进行试用,但是是有期限的。如果只是单方面的研究的话,还是建议用稍微便宜些的平台,我主要是需要期权的实时数据进行分析和交易。

如何读取下载好的数据出来

  1. 首先要将python的对接链跑起来
  2. 建议获取一下交易日历,如果觉得不需要也无妨,
  3. 订阅下载你要的代码
  4. 通过内部函数命令读取你下载好的数据

上代码

def get_data_daily(ticker_: str) -> pd.DataFrame:
	hist_data_1d_dict = xtdata.get_market_data_ex(
		field_list=[],
		stock_list=[ticker_],
		period='1d',
		start_time=year,
		end_time="",
		count=-1,
		dividend_type='front',
		fill_data=False,
	)

	hist_data_1d_ = [value for key, value in hist_data_1d_dict.items()][-1]

    data_.index = pd.to_datetime(hist_data_1d_.index.astype(str), format='%Y%m%d', errors='coerce')

	return data_
  1. 可能很多人会问我[value for key, value in hist_data_1d_.items()][-1]是个什么鬼代码。我们获取过来的hist_data_1d_dict 返回的是字典形式的数据,key是我们获取数据的代码,譬如说510300.SH; value才是是封装好的Dataframe。我们通过.item()函数将字典拆分来获取。
  2. 养成一个好习惯,每次获取完Dataframe后一定要确定你的index设为什么值;或者如果有index的话,我们如何拿到一个我们更喜欢的格式。我通过pandas的to_datetime内部函数,把index从数字串封装成标准的字符串形式,标准的时间戳,以便后面的并表或画图的操作。我们来看看修改前后的效果。
  3. 另外普及一下:undl是underlying的缩写,underlying asset 通指标的资产,在期权交易当中我们经常会看到相关词汇。
    index时间戳对齐
    下一贴我还没有想好些什么呢,大概率会是如何来获取期权的数据和一些获取的技巧逻辑的内容。
历史帖子

量化投资分析平台 迅投 QMT(一)激活python迅投对接端口
量化投资分析平台 迅投 QMT(二)服务器端订阅下载数据

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mike_Leigh

您的鼓励就是我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值