给定一个整数数组 nums ,找出一个序列中乘积最大的连续子序列(该序列至少包含一个数)。
示例 1:
输入: [2,3,-2,4]
输出: 6
解释: 子数组 [2,3] 有最大乘积 6。
示例 2:
输入: [-2,0,-1]
输出: 0
解释: 结果不能为 2, 因为 [-2,-1] 不是子数组。
思路
- 遍历数组时计算当前最大值,不断更新 令imax为当前最大值,则当前最大值为 imax = max(imax * nums[i],
- nums[i]) 由于存在负数,那么会导致最大的变最小的,最小的变最大的。因此还需要维护当前最小值imin,imin = min(imin
- nums[i], nums[i]) 当负数出现时则imax与imin进行交换再进行下一步计算
- 时间复杂度:O(n)O(n)
代码
public static int maxProduct(int[] nums) {
if (nums.length == 1) {
return nums[0];
}
int fmax = nums[0];
int max = 0;
int min = 0;
for (int i = 0; i < nums.length; i++) {
if (nums[i] < 0) {
int tem = min;
min = max;
max = tem;
}
max = Math.max(max * nums[i], nums[i]);
min = Math.min(min * nums[i], nums[i]);
fmax = Math.max(fmax, max);
}
return fmax;
}
你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。
给定一个代表每个房屋存放金额的非负整数数组,计算你在不触动警报装置的情况下,能够偷窃到的最高金额。
示例 1:
输入: [1,2,3,1]
输出: 4
解释: 偷窃 1 号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3)。
偷窃到的最高金额 = 1 + 3 = 4 。
示例 2:
输入: [2,7,9,3,1]
输出: 12
解释: 偷窃 1 号房屋 (金额 = 2), 偷窃 3 号房屋 (金额 = 9),接着偷窃 5 号房屋 (金额 = 1)。
偷窃到的最高金额 = 2 + 9 + 1 = 12 。
分析
- 第i个房子,只有两个状态,要么偷,要么不偷
如果偷的话,就是i-1房子不能偷,这就取决于偷价值大,还是不偷价值大
状态方程:
dp[n] = MAX( dp[n-1], dp[n-2] + num )
因为只用到两个变量就可以了,所以不必要开辟一个数组
代码
public static int rob(int[] nums) {
int prevMax = 0;
int currMax = 0;
for (int x : nums) {
int temp = currMax;
currMax = Math.max(prevMax + x, currMax);
prevMax = temp;
}
return currMax;
}