JS实现算法——最大子串和

整体的动态规划的思路就是 保留之前算好的最大子串,即每到一个元素,就已经确定好了当前元素之前的最大子串和,就要看后面的新元素能否让前面的最大子串和发生变化,变得更大

let nums = [5,-1,2,-4,1,-2,2]
// 有注释版
function getMaxNum(nums){
    let start = 0; //标记最大子串和的子串起点下标
    let end = 0; //标记最大子串和的子串结束点下标
    let sum = nums[0]; //初始化第一个元素记为最大值
    let n = nums[0]; //n代表当前前面的数据和的情况(临时值),刚开始的子串和默认为第一个元素
    for(let i=1; i<nums.length; i++) {   
        // console.log("n="+n, " nums["+i+"]="+nums[i]," sum="+sum)
        let flag = true;//是否改变start的值
        if( n>0 ) { //如果n是大于0的,和当前元素nums[i]相加之后不会变小,所以给他们相加
            n = n + nums[i];
            flag=false
        }else{ 
            // 如果n是小于等于0的,相加后只会更小或不变,所以,
            // 将当前元素直接赋值给n,表示从nums[i]重新开始统计子串和,
            // 下面判断了n和sum的大小之后,如果重新赋值给sum,则start也会变为i
            n = nums[i];
        } 
        // console.log("判断后的n",n)      
        if( n>sum ) {
            sum = n; 
            if(flag){ start = i;}//如果sum值变了,且上一个n是小于0的,则重新给start值
            end = i; //如果sum值变了,则重新记录end值
        }
        // console.log("sum="+sum, " start=",start, " end=",end)
        // console.log("---------------------------------")
    }
    console.log("sum="+sum, start,end) 
    return sum; 
}



function getMaxNum_simple(nums){
    let start = 0;
    let end = 0;
    let sum =  nums[0];
    let temp = nums[0];
    for(let i=1;i<nums.length;i++){
        let flag = false;
        if(temp>0){
            temp=temp+nums[i]; 
        }else{
            temp = nums[i];
            flag=true;
        }
        if(temp>sum){
            sum=temp;
            end=i;
            if(flag){ start=i } 
        }
    }
    console.log(sum,start,end);
}
getMaxNum(nums); 
getMaxNum_simple(nums)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

structrue

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值