LSP数据集与MPII数据集标签转txt文件(字典形式储存)

LSP数据集和MPII数据集是常见的人体姿态识别公开数据集,数据中的label的保存格式为mat格式(mat格式为matlab存储文件的格式)。

为了方便python和c++调用数据的label,常常会把存储格式设为 txt 格式和 json 格式。为了方便看到数据集中的关键点,作者将关键点进行了 可视化展示。

LSP数据集

import glob
import os
from scipy.io import loadmat
import numpy as np
from PIL import Image
import cv2

colors = [(50, 0, 0), (100, 0, 0), (150, 0, 0), (200, 0, 0), (250, 0, 0), (0, 50, 0), (0, 100, 0),(0, 150, 0), (0, 200, 0),(0, 250, 0), (0, 0, 50), (0, 0, 100), (0, 0, 150), (0, 0, 200), (0, 0, 250), (50, 50, 50)]

def save_joints(mat_path,image_path,save_path):
    """
    mat_path 是 lsp数据集mat文件所在地址,包含mat文件名
    image_path 是 lsp数据集图像的地址,不包含图像名
    save_path 是 要将lsp数据集中关键点保存的地址名
    lsp数据集共2000张图片
    """
    joints = loadmat(mat_path)
    joints = joints["joints"].transpose(2,0,1)
    joints = joints[:,:2,:]

    num = 0
    for img_path in glob.glob("%s/*.jpg" %image_path):
        img_name = img_path.split("\\")[-1]
        img = Image.open(img_path)
        img = np.array(img,dtype=np.uint8)
        img = cv2.cvtColor(img,cv2.COLOR_RGB2BGR)
        cen_points = joints[num,...]
        points_num = cen_points.shape[-1]
        point_dict = {}
        for points_ in range(points_num):
            point_x = cen_points[0,points_]
            point_y = cen_points[1,points_]
            point_dict[str(points_)] = [int(point_x),int(point_y)]
            img1 = cv2.circle(img, (int(point_x), int(point_y)), 5, colors[points_], 
                              thickness=-1)
            img1 = cv2.putText(img, str(points_),
                               (int(point_x) + 10, int(point_y)),
                                cv2.FONT_HERSHEY_SIMPLEX, 1, colors[points_], 1)

        with open(os.path.join(save_path,img_name.split(".")[0]+".txt"),"w") as img_txt:
            img_txt.write(str(point_dict))
        img_txt.close()
        num += 1
        # 若不想看图片中关键点的位置是否准确,请注释掉后面两行
        cv2.imshow("img",img)
        cv2.waitKey()

MPII数据集

import os
from scipy.io import loadmat
import numpy as np
from PIL import Image
import cv2


def save_joints(mat_path,image_path,save_path):
    joint_data_fn = save_path
    mat = loadmat(mat_path)
    mpii_images = image_path

    for i, (anno, train_flag) in enumerate(
        zip(mat['RELEASE']['annolist'][0, 0][0],
            mat['RELEASE']['img_train'][0, 0][0])):
        img_fn = anno['image']['name'][0, 0][0]

        img_path = os.path.join(mpii_images, img_fn)
        if not os.path.exists(img_path):
            print("error, not exist", img_path)
            continue
        img = Image.open(os.path.join(image_path, img_fn))
        img = np.array(img,dtype=np.uint8)
        img1 = cv2.cvtColor(img,cv2.COLOR_RGB2BGR)

        height, width, _ = img1.shape

        train_flag = int(train_flag)

        if 'x1' in str(anno['annorect'].dtype):
            head_rect = zip(
                [x1[0, 0] for x1 in anno['annorect']['x1'][0]],
                [y1[0, 0] for y1 in anno['annorect']['y1'][0]],
                [x2[0, 0] for x2 in anno['annorect']['x2'][0]],
                [y2[0, 0] for y2 in anno['annorect']['y2'][0]])

        if 'annopoints' in str(anno['annorect'].dtype):
            # only one person
            annopoints = anno['annorect']['annopoints'][0]
            head_x1s = anno['annorect']['x1'][0]
            head_y1s = anno['annorect']['y1'][0]
            head_x2s = anno['annorect']['x2'][0]
            head_y2s = anno['annorect']['y2'][0]

            image_write = ""
            for annopoint, head_x1, head_y1, head_x2, head_y2 in zip(
                    annopoints, head_x1s, head_y1s, head_x2s, head_y2s):
                if annopoint != []:
                    head_rect = [float(head_x1[0, 0]),
                                 float(head_y1[0, 0]),
                                 float(head_x2[0, 0]),
                                 float(head_y2[0, 0])]
                    # build feed_dict
                    feed_dict = {}
                    feed_dict['width'] = width
                    feed_dict['height'] = height

                    # joint coordinates
                    annopoint = annopoint['point'][0, 0]
                    j_id = [str(j_i[0, 0]) for j_i in annopoint['id'][0]]
                    x = [x[0, 0] for x in annopoint['x'][0]]
                    y = [y[0, 0] for y in annopoint['y'][0]]
                    joint_pos = {}
                    for _j_id, (_x, _y) in zip(j_id, zip(x, y)):
                        joint_pos[str(_j_id)] = [float(_x), float(_y)]
                    # joint_pos = fix_wrong_joints(joint_pos)

                    # visiblity list
                    if 'is_visible' in str(annopoint.dtype):
                        vis = [v[0] if v else [0]
                               for v in annopoint['is_visible'][0]]
                        vis = dict([(k, int(v[0])) if len(v) > 0 else v
                                    for k, v in zip(j_id, vis)])
                    else:
                        vis = None
                    feed_dict['x'] = x
                    feed_dict['y'] = y
                    feed_dict['vis'] = vis
                    feed_dict['filename'] = img_fn

                    img1 = cv2.rectangle(img1, (int(head_rect[0]), int(head_rect[1])),
                                         (int(head_rect[2]), int(head_rect[3])),
                                          color=(255, 0, 0), thickness=4)

                    colors = [(50, 0, 0), (100, 0, 0), (150, 0, 0), (200, 0, 0), (250, 0, 0), (0, 50, 0), (0, 100, 0),(0, 150, 0), (0, 200, 0),(0, 250, 0), (0, 0, 50), (0, 0, 100), (0, 0, 150), (0, 0, 200), (0, 0, 250), (50, 50, 50)]


                    for mm in range(len(joint_pos)):
                        img1 = cv2.circle(img1, (int(joint_pos[str(list(joint_pos.keys())[mm])][0]), int(joint_pos[str(list(joint_pos.keys())[mm])][1])),10, colors[mm], thickness=-1)           
                        img1 = cv2.putText(img1, str(mm), 
                      (int(joint_pos[str(list(joint_pos.keys())[mm])][0]) + 10, 
                       int(joint_pos[str(list(joint_pos.keys())[mm])][1])), 
                          cv2.FONT_HERSHEY_SIMPLEX, 1, colors[mm], 1)
                    data = {
                        # 'filename': img_fn,
                        'train': train_flag,
                        'head_rect': head_rect,
                        'is_visible': vis,
                        'joint_pos': joint_pos
                         }

                    image_write = image_write + str(data) + "\n"

            fp = open(os.path.join(joint_data_fn,img_fn.split(".")[0]+".txt"), 'w')
            fp.write(image_write)
            fp.close()

            print(f"      {img_fn}.txt      保存成功")


        # 若不想看图片中关键点的位置是否准确,请注释掉后面三行
        cv2.imshow("img_video", img1)
        cv2.waitKey()
        cv2.destroyAllWindows()

注:MPII数据集label转化做过参考。     

       参考 :GitHub - Fangyh09/PoseDatasets: Filter multiple pose datasets (coco, flic, lsp, mpii, ai_challenge)

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值