数据挖掘---朴素贝叶斯(naive bayes)分类器

一、引例

C1:buys_computer=‘yes’
C2:buys_computer=‘no’
X=(age<=30,income=medium,student=yes,credit_rating=fair)
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

二、R语言实现

使用e1071包的naiveBayes函数

library(e1071)
data(iris)
m <- dim(iris)[1] 
val <- sample(1:m, size =round(m/3), replace = FALSE, prob= rep(1/m, m)) 

trainSet <- iris[-val,] 
testSet <- iris[val,]

nby<-naiveBayes(Species~.,trainSet)

testPre<-predict(nby,testSet)

在这里插入图片描述

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值