归约:X到Y的归约可以理解为X到Y问题的映射,reduction可以解释为at least as difficult as… 比如
X可以被Y的算法解决,则Xis no more difficult than Y, X可以归约到Y,记X≤Y。e.g. x2可以归约到
任意两数的乘积。
A是不可判定问题->B不可判定 A不递归->B不递归 B可判定->A可判定 B是递归的->A是递归的
若X多项式时间归约到Y,Y多项式时间可解,则X多项式时间可解;若X多项式时间归约到Y,X多项
式时间不可解,则Y多项式时间不可解.
X多项式时间归约到Y,Y多项式时间归约到Z,则X多项式时间归约到Z.
PRIME(COMPOSITE)多项式时间归约到Factor,但是Factor多项式时间不能归约到PRIME
(COMPOSITE)
若A≤PB,B∈NP,则A∈NP。若A≤PB,B∈P,则A∈P。
若X是NPC的,则X在多项式时间内可解iffP=NP.
SAT多项式时间归约到3-SAT(3-SAT是NPC的)
PDA中,若每一个格局至多有一个格局接在它后面,则为确定型的。确定型CFL在补下封闭。
图灵可识别语言和图灵可判定语言的区别:若 S 是图灵可识别语言,则只需存在一台图灵机M,当
M 的输入属于S 时,M 一定会停机并进入接受状态;当 M 的输入不属于S 时,M 可能停机并进入
拒绝状态,或者永不停机。而若 S 是图灵可判定语言,则必须存在图灵机 M,使得对于任意输入
串,M 总能停机,并根据 输入 属于或不属于 S 分别进入接受或拒绝状态。
有穷自动机与图灵机的区别:
图灵机在带子上能读写;
读写头能双向移动;
带子无无限长;
图灵机进入拒绝和接受状态将立即停机;
格局
图灵机计算过程中,当前状态、当前带子内容和读写头当前位置组合在一起,成为图灵机的格局;
判定器
对所有输入都停机的图灵机。
每个多带图灵机等价于一个单带图灵机。
每个非确定型图灵机都等价于某一个确定性图灵机。
图灵机的本质特征:无限制的访问无限的存储器;
丘奇-图灵论题
算法的非形式化概念和精确定义之间的这个联系。
可判定性
关于 确定性有限自动机 的所有计算问题都是 可判定的 ;
关于 图灵机 的所有计算问题 都是 不可判定的 ;
关于 下推自动机 的计算问题 , 一半是可以判定的 , 另一半是不可判定的 ;
DFA的接受问题 是一个可判定语言, 是一个可判定语言, 是一个可判定语言。