最大公倍数与最小公约数 C/C++

1.最大公约数

1.1思想

正整数a与b的最大公约数是指a与b的所有公约数中最大的那个公约数,例如4和6的最大公约数为2,3和9的最大公约数为3。一般用gcd(a,b)来表示a和b的最大公约数。

欧几里得算法基于下面这个定理
设a,b均为正整数,则gcd(a,b) = gcd(b,a%d)。

证明:设 a = kb + r,期中k和r分别为a除以b得到的余数
则有 r = a - kb 成立。
设d为a和b的一个公约数,
那么由r = a - kb,得d也是r的一个约数。
因此d是b和r的一个公约数。
又由r = a%b,得d为b和a%b的一个公约数。
因此d既是a和b的公约数,也是b和a%b的公约数。
由d的任意性,得a和b的公约数都是b和a%b的公约数。
由a = kb + r,同理可证b和a%b的公约数都是a和b的公约数。
因此a和b的公约数与b和a%b的公约数全部相等,故其最大的公约数也相等,
即有gcd(a,b) = gcd(b,a%b) 。

由上面这个定理可以发现,如果a<b,那么定理的结果就是将a和b交换;如果a>b,那么通过这个定理总可以将数据规模变小,并且减小得非常快。这样似乎可以很快得到结果,只是还需要一个东西:递归边界,即数据规模减小到什么程度使得可以算出结果来。很简单,总所周知:0和任意一个整数a的最大公约数都是a(注意:不是0),这个结论就可以当做递归边界。由此很容易想到将其写成递归形式,因为递归的两个关键已经得到:

  1. 递归边界 gcd(a,0)=a。
  2. 递归式 gcd(a,b) = gcd(b,a%b)。

1.2代码

于是乎,可以得到下面的求解最大公约数的代码

int gcd(int a,int b){
	if(b == 0) return a;
	else return gcd(b , a % b);
}

更简洁的版本:

int gcd(int a,int b){
	return !b ? a : gcd(b, a%b);
}

自行取用

2.最小公倍数

2.1思想

正整数a与b的最小公倍数是指a与b的所有公倍数中最小的那个公倍数,例如4和6的最小公倍数为12,3和9的最小公倍数为9。一般用lcm(a,b)来表示a,b的最小公倍数。

最小公倍数的求解在最大公约数的基础上进行。当得到a和b的最大公约数d之后,可以马上得到a和b的最小公倍数是ab/d。这个公式通过集合可以很好地理解,如图所示在这里插入图片描述
由图很容易发现,a和b的最大公约数即集合a与b的交集,而最小公倍数为集合a与集合b的并集。要得到并集,由于ab会使用公因子部分多计算一次,因此需要除掉一次公因子,于是就得到了a与b的最小公倍数ab/d。

由于ab在实际计算时有可能溢出,因此更恰当的写法是a / d * b。由于d是a和b的最大公约数,因此a/d一定可以整除。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值