题目在这里:我是题目
题目就是输入两个数,一个n 一个r。实现类似Cnr(数学里面的排列组合,n在下面,r在上面)
这里可以用到递归,在网上看到了别人AC代码如下:(稍有改动)
#include <cstdio>
int n, r;
int num[20];
void combine(int count) {
if(count == r +1) { //递归出口
for(int i = 1;i <= r; i++)
printf("%d ", num[i]);
printf("\n");
return ; //返回上一层
}
for(int i = num[count - 1] + 1;i <= n; i++) { //依次枚举,这里初试条件改成i=count可以得到全排列
num[count] = i;
combine(count+1);
}
}
int main() {
scanf("%d%d", &n, &r);
int count = 1;
num[0] = 0;
combine(count);
return 0;
}
但是并不是很理解,所以我把每个时刻的状态打印出来,来理解递归:
以下都是n=5,r=3的情况下得出的推论
这是第1次进入函数,count=1
进入循环,i=1,将ans[1]赋值为1
这是第2次进入函数,count=2
进入循环,i=2,将ans[2]赋值为2
这是第3次进入函数,count=3
进入循环,i=3,将ans[3]赋值为3
这是第4次进入函数,count=4
1 2 3
进入循环,i=4,将ans[3]赋值为4
这是第5次进入函数,count=4
1 2 4
…此处省略一万字
为了方便自己复习递归,花了点功夫整理成图片了:
怎么说,一步一步整理下来之后有了新的感受,就是递归就是有点分治的思想吧。明确了一个方向之后,把路铺开,从后面(递归边界)一点点往前面算过来,最后就能得到自己想要的结果。就好比最经典的递归:计算n!中的return n*func(n-1) 然后边界是 if(n==0) return 1;也就是先调用一大堆函数(或者可以理解成一种状态),只有后面的状态明确了之后才能明确前面的状态。直到展开到边界了以后所有的状态都出来了才可以计算。