HDU 6628 [2019 Multi-University Training Contest 5]

permutation 1

Problem Description

A sequence of length n is called a permutation if and only if it’s composed of the first n positive integers and each number appears exactly once.

Here we define the “difference sequence” of a permutation p1,p2,…,pn as p2−p1,p3−p2,…,pn−pn−1. In other words, the length of the difference sequence is n−1 and the i-th term is pi+1−pi

Now, you are given two integers N,K. Please find the permutation with length N such that the difference sequence of which is the K-th lexicographically smallest among all difference sequences of all permutations of length N.

Input

The first line contains one integer T indicating that there are T tests.

Each test consists of two integers N,K in a single line.

  • 1≤T≤40

  • 2≤N≤20

  • 1≤K≤min(104,N!)

Output

For each test, please output N integers in a single line. Those N integers represent a permutation of 1 to N, and its difference sequence is the K-th lexicographically smallest.

Sample Input

7
3 1
3 2
3 3
3 4
3 5
3 6
20 10000

Sample Output

3 1 2
3 2 1
2 1 3
2 3 1
1 2 3
1 3 2
20 1 2 3 4 5 6 7 8 9 10 11 13 19 18 14 16 15 17 12

思路

题目的意思是,给出n,k,把n个数全排序,有很多种不同的排列方式(如3 1 2,2 1 3),输出第k种排列方式。题目给出的排序规则:相邻两个数为一组,从第一组开始,相邻两个数的差越小排越前。例子输出中的3 1 2,相减得到的是 -2,1比3 2 1的-1 -1,前者第一组数已经比后者小了,所以不需要考虑后面的内容,3 1 2排在3 2 1前头。
这个样例给的实在太心机了,我看到这道题的时候并没有太读懂题意就开始抖机灵,以为是第一位从大到小排,后面的位是尽量从小到大排,写完代码之后用20的那个样例测试发现能得到正确的答案就提交了。WA了以后以为是自己哪里没有处理,各种修改边界类型,然后我的队友告诉我题意理解错了……
题解说这道题数据很小,可以直接爆搜解决问题,时间复杂度是O(k×n2)。

代码

#include<bits/stdc++.h>
using namespace std;
const int inf = 0x3f3f3f3f;
const int maxn = 40+5;
typedef long long ll;
#define debug printf("debug\n");

int t,n;
ll k;
bool vis[maxn];
int ans[maxn];

bool dfs(int pos, int pre, int l, int r) {
	if(pos == n) {
		k--;
		if(!k) {  //所有位枚举完才输出 
			for(int i=0; i<n; i++) {
				cout << ans[i] - l + 1;
				if(i<n-1) {
					cout << " ";
				} else {
					puts("");
				}
			}
			return true;
		}
		return false;
	}
	for(int i=1-n; i<=n-1; i++) {  //枚举差值 
		if(vis[20+i+pre]) {  //加20为了防止负数出现什么奇怪的问题
			continue;
		}
		vis[20+i+pre] = true;
		ans[pos] = i+pre;
		if(max(i+pre,r) - min(l,i+pre) <= n-1) {  //判断是否符合数据要求
			ans[pos] = i + pre;
			if(dfs(pos+1, i+pre, min(i+pre,l), max(i+pre,r) ) ) {
				vis[20+i+pre]=false;
				return true;
			}
		}
		vis[20+i+pre]=false;
	}
	return false;
}


int main() {
	while(cin >> t) {
		while(t--) {
			cin >> n >> k;
			memset(vis, 0, sizeof(vis));
			vis[20+n]=true;
			ans[0]=n;
			dfs(1,n,n,n);
		}
	}
}

题目来源

HDU 6628 permutation 1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值