题意:一堆猴子刚开始都不认识彼此,要打完架才认识…每次他们会找自己认识的最厉害的猴子打架,打完这个猴子的厉害值减半(向下取整),询问打完后认识的猴子中的最厉害的值(若已经认识输出-1)。
思路:用并查集判断是否认识,用左偏树去维护大根堆,实现快速合并。
注意:每次删完根节点要把它子节点和距离置空,不时合并时会MLE…
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define maxn 100005
int val[maxn],dis[maxn],ls[maxn],rs[maxn];
int f[maxn];
int n,m;
inline void ini()//初始化;
{
for(int i=1;i<=n;i++)
{
f[i]=i;
}
memset(ls,0,sizeof(ls));
memset(rs,0,sizeof(rs));
dis[0]=-1;
}
int find(int x)//并查集;
{
return x==f[x]? x:f[x]=find(f[x]);
}
int merge(int x,int y)
{
if(!x||!y)//如果其中一棵为空树,那么即返回另外一棵树;
{
return x+y;
}
if(val[x]<val[y])//维护大根堆的性质;
{
swap(x,y);
}
rs[x]=merge(rs[x],y);
if(dis[ls[x]]<dis[rs[x]])//要保持左偏树的性质:左树的距离不小于右树的距离;
{
swap(ls[x],rs[x]);
}
f[rs[x]]=f[ls[x]]=f[x]=x;
dis[x]=dis[rs[x]]+1;
return x;
}
int del(int x)
{
int l=ls[x];
int r=rs[x];
f[l]=l;
f[r]=r;
ls[x]=rs[x]=dis[x]=0;//删除完该节点要将其子节点置空,不然会MLE...;
int now=merge(l,r);
f[ls[x]]=f[rs[x]]=f[x]=now;
return now;
}
int main()
{
int i,j;
int a,b;
while(scanf("%d",&n)!=EOF)
{
ini();
for(i=1;i<=n;i++)
{
scanf("%d",&val[i]);
}
scanf("%d",&m);
for(i=1;i<=m;i++)
{
scanf("%d%d",&a,&b);
int fa=find(a);
int fb=find(b);
if(fa==fb)
{
printf("-1\n");
}
else
{
val[fa]/=2;
val[fb]/=2;
int l=del(fa);//返回的是删除后的新树的根节点;
int r=del(fb);
int now1=merge(l,fa);//插入新的节点值;
int now2=merge(r,fb);
int ans=merge(now1,now2);//合并两堆;
printf("%d\n",val[ans]);
}
}
}
return 0;
}