同时考虑用户兴趣和社交影响变化的动态图

本文针对用户兴趣动态变化及社交影响的问题,提出了动态图注意力网络(Dynamic Graph Attention Networks, DGAN)。DGAN结合RNN建模用户会话行为与图注意网络反映社交影响,动态推断用户兴趣。通过非线性变换融合用户短期和长期兴趣,并使用注意机制计算朋友的影响权重,以生成更准确的推荐建议。" 126663506,9374611,Vue基础教程:模板语法与数据绑定,"['Vue.js', '前端开发', '数据绑定', '模板语法']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2019,WSDM

《Session-based Social Recommendation via Dynamic Graph Attention Networks》论文阅读笔记

  1. 推荐中面临挑战:
    (1)用户兴趣是动态变化的;
    (2)用户会受到朋友的影响,而且影响者是动态的(用户在搜索滑稽电影时会受到喜欢喜剧朋友的影响;而在搜索动作片时,可能会受到另一组朋友的影响)

  2. 已有方法:
    为了获得用户的动态兴趣,将用户的行为划分为子序列(会话),在当前会话中给用户推荐下一个感兴趣的项目。此外,朋友也会对推荐产生影响,因此提出基于会话的社交推荐。

  3. 存在问题:
    只考虑建模用户兴趣的动态变化或者社交影响,并没有将两者结合。

  4. 本文:
    提出动态图注意神经网络,动态推断用户当前兴趣受到的影响。用RNN建模动态用户行为,用图注意神经网络反映上下文相关的社交影响。
    在这里插入图片描述

  5. 具体:
    5.1 RNN
    建模用户当前会话中推荐的项目
    在这里插入图片描述
    5.2 建模朋友的兴趣
    (1) 短期兴趣:
    用RNN的最终输出表示:
    在这里插入图片描述
    (2) 长期兴趣:
    时间不敏感,反应用户的平均兴趣。
    在这里插入图片描述
    W表示用户的嵌入矩阵。
    (3) 结合长短期兴趣(使用非线性变换):
    在这里插入图片描述
    5.3 图注意网络
    结合当前用户和朋友的特征(每个朋友的影响不同)。首先编码社交网络,然后使用消息传播算法,将特征沿着边传播(使用注意机制)。
    (1) 动态特征图
    用户以及n个朋友的初始特征:
    在这里插入图片描述
    (2) 图注意网络
    注意机制:
    在这里插入图片描述
    f:目标用户和其邻居的相似度函数
    加权聚合:
    在这里插入图片描述
    最终得到社交影响节点特征。
    5.4 推荐
    使用一个全连接层结合用户动态兴趣和社交影响:
    在这里插入图片描述
    预测:
    在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值