2019,WSDM
《Session-based Social Recommendation via Dynamic Graph Attention Networks》论文阅读笔记
-
推荐中面临挑战:
(1)用户兴趣是动态变化的;
(2)用户会受到朋友的影响,而且影响者是动态的(用户在搜索滑稽电影时会受到喜欢喜剧朋友的影响;而在搜索动作片时,可能会受到另一组朋友的影响) -
已有方法:
为了获得用户的动态兴趣,将用户的行为划分为子序列(会话),在当前会话中给用户推荐下一个感兴趣的项目。此外,朋友也会对推荐产生影响,因此提出基于会话的社交推荐。 -
存在问题:
只考虑建模用户兴趣的动态变化或者社交影响,并没有将两者结合。 -
本文:
提出动态图注意神经网络,动态推断用户当前兴趣受到的影响。用RNN建模动态用户行为,用图注意神经网络反映上下文相关的社交影响。
-
具体:
5.1 RNN
建模用户当前会话中推荐的项目
5.2 建模朋友的兴趣
(1) 短期兴趣:
用RNN的最终输出表示:
(2) 长期兴趣:
时间不敏感,反应用户的平均兴趣。
W表示用户的嵌入矩阵。
(3) 结合长短期兴趣(使用非线性变换):
5.3 图注意网络
结合当前用户和朋友的特征(每个朋友的影响不同)。首先编码社交网络,然后使用消息传播算法,将特征沿着边传播(使用注意机制)。
(1) 动态特征图
用户以及n个朋友的初始特征:
(2) 图注意网络
注意机制:
f:目标用户和其邻居的相似度函数
加权聚合:
最终得到社交影响节点特征。
5.4 推荐
使用一个全连接层结合用户动态兴趣和社交影响:
预测: