基于GNN的社交推荐系统

该文介绍了如何利用GNN构建社交推荐系统,解决结合用户-项目图和社交图、处理评分信息以及考虑社交关系强弱的问题。通过项目聚合和社交聚合学习用户特征,并采用注意机制动态加权,预测用户评分。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

发表于2019年WWW

《Graph Neural Networks for Social Recommendation》论文阅读笔记

GNN,融合了节点信息以及结构信息,在图结构数据中学习。在社交推荐系统中可以将用户-用户社交图,用户-项目图作为系统中的数据,学习用户和项目的特征,因此GNN在处理的时候有很大的优势。
问题:基于GNN建立社交推荐系统面临挑战:
(1) 需要从用户-项目图,社交图中获得用户特征,怎样结合这两个图;
(2) 用户-项目图中不仅包含用户项目之间的交互,还有评分。怎样获得用户项目之间的交互和评价;
(3) 用户社交图中连接强度不同(强连接和弱连接)。与弱关系相比,强关系用户可能会分享更相似的喜好。平等考虑社交关系可能导致推荐性能下降。因此需要考虑区分社交关系。
本文:基于图神经网络框架建立社交推荐系统。
The overall architecture of the model
用户建模:
社交图和用户-项目图,从两个角度学习用户特征,然后聚合(一个是项目聚合,在用户项目图中建模用户;一个是社交聚合,从社交的角度建模用户)。
项目聚合:同时考虑交互和评分信息

### 构建基于图神经网络的社交推荐系统 #### 1. 数据准备与预处理 为了构建有效的社交推荐系统,首先需要收集并整理用户、物品及其交互的数据。这些数据通常被转换成图结构,在此过程中,用户和物品作为节点,而用户的偏好行为(如点赞、评论等)则成为连接节点的边[^1]。 对于社交平台而言,除了基本的用户-项目互动外,还应考虑加入额外的信息层,比如共同兴趣标签或是地理位置信息,这有助于更精准地刻画用户画像及社群特性[^2]。 ```python import pandas as pd from sklearn.model_selection import train_test_split # 假设有一个DataFrame df包含了用户ID, 商品ID 和评分 df = pd.read_csv('ratings.csv') # 将数据集划分为训练集和测试集 train_df, test_df = train_test_split(df, test_size=0.2) print("Train set size:", len(train_df)) print("Test set size:", len(test_df)) ``` #### 2. 图神经网络模型的选择与设计 选择合适的GNN架构至关重要。考虑到社交场景下的特殊需求——即不仅要理解个体的行为模式还要识别群体间的关联规律——GCN (Graph Convolutional Networks),GATs (Graph Attention Networks) 或者其他变体可能是不错的选择[^3]。这类算法擅长于挖掘隐藏在网络背后的深层次特征,并能有效应对稀疏性和冷启动等问题。 针对具体应用场景定制化调整参数设置也很重要;例如调节层数、激活函数种类以及正则项强度等因素均会对最终效果产生影响[^4]。 ```python import torch.nn.functional as F from torch_geometric.nn import GCNConv class SocialRecSys(torch.nn.Module): def __init__(self): super(SocialRecSys, self).__init__() self.conv1 = GCNConv(in_channels=num_features, out_channels=hidden_dim) self.conv2 = GCNConv(hidden_dim, num_classes) def forward(self, data): x, edge_index = data.x, data.edge_index x = self.conv1(x, edge_index) x = F.relu(x) x = F.dropout(x, training=self.training) x = self.conv2(x, edge_index) return F.log_softmax(x, dim=1) ``` #### 3. 训练过程优化技巧 采用负采样策略可以帮助缓解样本不平衡带来的负面影响,尤其是在面对大规模稀疏矩阵时尤为必要。此外,引入自监督学习机制也有助于增强模型泛化能力,减少对外部标注数据量的需求。 利用早停法(Early Stopping)防止过拟合现象发生同样不可忽视。当验证集上的性能指标连续多个epoch不再提升,则提前终止迭代流程以保存最佳权重配置。 ```python patience = 5 early_stopping = EarlyStopping(patience=patience, verbose=True) for epoch in range(epochs): model.train() optimizer.zero_grad() output = model(data) loss = criterion(output[data.train_mask], data.y[data.train_mask]) loss.backward() optimizer.step() early_stopping(loss.item(), model) if early_stopping.early_stop: print(f"Early stopping at Epoch {epoch}") break ``` #### 4. 性能评估方法论 最后一步是对所开发出来的系统进行全面评测。常用的评价标准包括但不限于精确率(Precision)、召回率(Recall)、F1分数(F1 Score)等分类度量指标之外,还需特别关注个性化程度(Personalization Degree)这一衡量不同用户间差异性的关键因素。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值