分层式个性化联邦学习建模用户

本文介绍了《Hierarchical Personalized Federated Learning for User Modeling》论文,针对用户建模中的隐私保护和数据异构性问题,提出了一种分层式联邦学习(HPFL)方法。该方法通过客户端-服务器架构,利用隐私异构性定义公开和隐私信息,客户端仅上传公开模型部分,服务器进行聚合。同时,通过个性化更新策略适应统计异构性,确保模型的灵活性和安全性。
摘要由CSDN通过智能技术生成

《Hierarchical Personalized Federated Learning for User Modeling》论文阅读笔记

发表在2021,WWW

  1. 背景:用户建模是获得用户潜在特征的关键,在推荐系统中,用户建模可以辅助建模用户的兴趣。但通常这个过程是中心化训练的,会泄露隐私。考虑到个人数据的隐私性和敏感性,提出一些规则来限制个人数据的使用。FL可以安全分布式的建模用户,受到广泛关注。但它假设数据是独立同分布的,不同客户端简单的初始化本地模型。这些假设限制了FL去适应不同信息且异构的模型。因此,需要更好地适应联邦用户建模,处理客户端不一致的孤立场景。
  2. 问题:
    (1)统计异构性:不同客户端的用户数据独立分布;
    (2)隐私异构性:用户数据包含公开和隐私数据;
    (3)模型异构性:用户本地模型是异构的,需要在服务器端灵活聚合。
  3. 本文:提出一个客户端-服务器架构,分层式联邦学习(HPFL),首先利用隐私异构性定义分层信息,如公开和隐私信息,每个客户端为分层信息训练模型,训练好之后,直接上传公开部分;然后,客户端个性化的更新模型,服务器灵活聚合用户模型。(服务器加权聚合公开部分得到全局模型的公开部分,对于隐私部分,因为原始的特征保留在本地,服务器聚合本地模型的范围生成全局模型的隐私部分,而无需对特
  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值