电脑硬件小白 求大神推荐一款程序媛适用的笔记本

我是一个程序媛,自己的笔记本是10年前买的 已经太卡了,出差时领导给我配了个超厚更有年代的笔记本,不插电源 开机满电,运行瞬间没电关机的那种。。。。。想攒钱给自己配一个好看实用,不卡的笔记本,求大神推荐,最好是有链接。
求大神指点 选笔记本主要看哪些配置? 什么品牌?

阅读终点,创作起航,您可以撰写心得或摘录文章要点写篇博文。去创作
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
您好!针对您的问题,我可以提供一些关于 Matlab 特征值提取的常用方法及其实现。 1. SIFT 特征提取法 SIFT(Scale-Invariant Feature Transform)是一种基于尺度空间的特征提取方法,可以对图像进行关键点检测和特征描述。在 Matlab 中,可以使用 vlfeat 工具箱实现 SIFT 特征提取。具体可参考以下代码: ``` % 安装 vlfeat 工具箱 run('vlfeat-0.9.21/toolbox/vl_setup'); % 读入图像 im = imread('image.jpg'); % 转换为单通道灰度图 im_gray = rgb2gray(im); % 提取 SIFT 特征 [f, d] = vl_sift(single(im_gray)); ``` 2. PCA 特征提取法 PCA(Principal Component Analysis)即主成分分析,是一种常用的特征提取方法。在 Matlab 中,可以使用 pca 函数实现 PCA 特征提取。具体可参考以下代码: ``` % 读入图像 im = imread('image.jpg'); % 转换为单通道灰度图 im_gray = rgb2gray(im); % 转换为行向量 im_vec = im_gray(:)'; % PCA 特征提取 [coeff, score, latent] = pca(im_vec); ``` 3. LBP 特征提取法 LBP(Local Binary Pattern)是一种局部纹理特征提取方法,可以对图像进行纹理特征分析。在 Matlab 中,可以使用 extractLBPFeatures 函数实现 LBP 特征提取。具体可参考以下代码: ``` % 读入图像 im = imread('image.jpg'); % 转换为单通道灰度图 im_gray = rgb2gray(im); % 提取 LBP 特征 features = extractLBPFeatures(im_gray); ``` 以上是几种常用的 Matlab 特征值提取方法,希望可以对您有所帮助。如果您有任何问题或疑问,欢迎随时向我提问!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

G_GreenHand

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值