- 博客(33)
- 收藏
- 关注
原创 Jyputer Notebook显示内核似乎挂掉了,解决方案
换了电脑之后,重新使用Jupyter编辑,突然显示“内核似乎挂掉了”,现记录一下问题的解决方案。首先看一下问题的报错提示从上面的代码中可以看到,.好像是已经被事先初始化了。因此解决思路就是:使用Everything搜索,删除掉中的即可。注意运行环境要与当前一致。
2024-03-17 21:09:58 872
原创 RLChina2022-强化学习暑期课程-博弈搜索算法
《RLChina2022-强化学习暑期课程-博弈搜索算法》的学习笔记。主讲人:中科院自动化所 林舒老师
2022-08-16 18:56:51 2159
原创 计算MSEloss时报错:RuntimeError: Boolean value of Tensor with more than one value is ambiguous
计算MSEloss时报错:RuntimeError: Boolean value of Tensor with more than one value is ambiguous
2022-08-11 09:43:58 2330
原创 可视化工具Visdom的使用
Visdom是Facebook专为PyTorch开发的实时可视化工具包,其作用相当于TensorFlow中的Tensorboard,灵活高效且界面美观。如果想更多了解关于Visdom的使用可以参考官方文档。
2022-08-08 09:31:37 6337 2
原创 为什么用Github构建完Typora的图床后,图片可以上传成功,但是Typora中却一直加载失败?
问题描述最近一段时间,我开始使用Typora作为自己的记录学习笔记的工具。这里面存在一个问题:文档中插入的图片会被保存在本地。我记录笔记的初衷是为了多个终端都可以看到,现在图片保存到本地,其他地方是无法查看的。为了实现这个目的,我了解到有两种方案:使用坚果云,将图片的保存地址和笔记的保存地址同时同步到云端。利用图床工具。Typora刚好有这个功能,具体可参考利用PicGo+Github为Typora设置图床但是在构建图床的时候,会出现以下情况:图片上传成功,Github仓库中可以看到;
2021-03-14 21:23:52 2105 5
原创 利用PicGo+Github为Typora设置图床
利用PicGo+Github为Typora设置图床文章目录利用PicGo+Github为Typora设置图床准备工作一、 PicGo二、GitHub仓库三、Typora开始配置一、PicGo配置二、Typora配置验证Debug问题:为什么用markdown链接已经上传到github上的图片会失败?参考准备工作一、 PicGo下载安装PicGo。根据个人电脑情况(win or Mac)选择对应版本,尽量下载最新版(血的教训)。安装选项选择**“仅为我安装”**,切记不要安装在C盘;(
2021-03-14 21:00:18 562
原创 使用torch.load()加载模型参数时,提示“xxx.pt is a zip archive(did you mean to use torch.jit.load()?)“
前两天刚在服务器上安装了torch,开开心心开始自己的DL之旅。但是在将训练好的模型参数,加载到模型中时,出现了如下图所示的错误,百度半天无果。1.官网查看torch.save参数在torch官网查看了torch.save的介绍,如下图所示。可以看到在torch1.6版本中,对torch.save进行了更改.The 1.6 release of PyTorch switched torch.save to use a new zipfile-based file format. torch.load
2020-08-23 20:50:10 48634 26
原创 在CPU中调用经GPU训练出来的模型
在进行深度学习的项目时,通常会将模型扔到服务器中计算,然后将训练好的模型保存下来,再拿到本地用CPU计算。这个时候在使用model.load_state_dict(torch.load(model_cp) #加载训练好的模型参数,model_cp是模型参数保存的地址时,会报错这个时候,我们需要使用如下代码:model.load_state_dict(torch.load(model_cp,map_location = torch.device('cpu')))...
2020-08-23 15:07:28 3054
原创 管理服务器anaconda虚拟环境
首先在使用命令行在服务器上安装Ananconda。打开命令行,输入conda -V查看是否安装成功,已经当前的conda版本。前面的base表示现在所处的环境。如果我们激活了虚拟环境后面,这个地方会改变。创建虚拟环境conda creat -n “环境名称(自己定义)” python = x.x(python 版本)创建完成后,可以在anaconda/envs/下找到以"环境名称”命名的文件夹激活虚拟环境如果需要对虚拟环境进行下一步操作,如在虚拟环境下运行代码、给虚拟环境安装深度学..
2020-08-23 14:56:02 856
转载 Pytorch中Tensor的类型转换
train/eval过程中,打印loss信息data.item() ----> Tensor --> float数据类型转换在Tensor后加 .long(), .int(), .float(), .double()等即可,也可以用.to()函数进行转换, Tensor类型官网数据存储位置转换CPU张量 ----> GPU张量,使用data.cuda()GPU张量 ----> CPU张量,使用data.cpu()与numpy数据类型转换Tensor..
2020-08-23 11:50:54 1002
原创 CV入门赛事:街景字符编码识别-03-卷积神经网络CNN
文章目录1.CNN介绍1.1CNN模型基本概念1.1.1卷积层(Convolution)1.1.1.1 Padding操作1.1.1.2 卷积步长(stride)1.1.1.3彩色图像的卷积1.1.2池化层(Pooling)1.1.2.1 最大池化(Max pooling)1.1.2.2平均池化1.1.3激励层(activation function)1.1.4全连接层(fully connected layer,简称FC)2.主流CNN模型3.使用 Pytorch构建CNN模型3.1 CNN的一般结构3.
2020-05-26 20:46:13 756
原创 CV入门赛事:街景字符编码识别-02-数据读取及数据扩增
本文主要介绍如何使用python进行图片的读取和扩增图片数量1. 图像读取python中图像的读取,有以下两种常见的方式:利用Pillow库OpenCV 库方式一:利用Pillow读取from PIL import Image #导入需要的库im = Image.open('G:/python/04DataWhale/04CV基础入门/data-街景字符/mchar_train/mchar_train/000001.png')im.show()方式二:用OpenCv来读取impor
2020-05-23 22:10:43 178
转载 有关StandardScaler的transform和fit_transform方法
有关StandardScaler的transform和fit_transform方法背景:StandardScaler类是一个用来讲数据进行归一化和标准化的类。所谓归一化和标准化,即应用下列公式:使得新的X数据集方差为1,均值为0问题一:StandardScaler类中transform和fit_transform方法有什么区别?答:fit_transform方法是fit和transform的结合,fit_transform(X_train) 意思是找出X_train的和,并应用在X
2020-05-22 20:22:59 1276
原创 使用清华镜像安装python工具包
如果在安装python包过程中,下载到一半,出现红色报错,如下图所示多半是因为package源的问题,此时可以修改镜像源,使用清华大学开源软件镜像站进行安装。临时使用使用以下命令pip install -i https://pypi.tuna.tsinghua.edu.cn/simple 要下的包名注意:simple 不能少, 是 https 而不是 http如果是永久修改镜像源,即默认首先升级到最新的版本(>=10.0.0) 后进行配置:pip install pip -Upip
2020-05-22 19:00:34 1917
原创 anaconda探究:pip与conda安装异同以及conda最大的用途
写在前面近期在安装anaconda和pycharm,发现在安装python包时,有两种方式:pip install 包名称conda install 包名称话不多说:先上概念conda是一种通用包管理系统,是想要构建和管理任何语言的任何类型的软件。因此,它也适用于Python包。Pip代表Pip Installs Packages,是Python的官方认可的包管理器,最常用于安装在Python包索引(PyPI)上发布的包。pip是Python包的通用管理器; conda是一个与语言无关的
2020-05-22 18:02:55 2229
原创 CV入门赛事:街景字符编码识别-01
写在前面该任务来源于阿里天池大赛—零基础入门CV赛事-街景字符编码识别。1.比赛任务理解本赛题来源自Google街景图像中的门牌号数据集(The Street View House Numbers Dataset, SVHN)。因此主要任务是识别数字,即从给定图片中找出数字。1.1数据理解提供的数据如下图所示为了降低比赛难度,赛事给出了字符串在图中的位置,即在mchar_train.json中给出字符串标签。如下图所示:图片中的具体含义FieldDescriptiont
2020-05-20 19:19:58 358
原创 机器学习笔记-Task05-支持向量机SVM
前言本文是通过学习AI蜗牛车的【白话机器学习】算法理论+实战之支持向量机(SVM)及诸如吴恩达、B站白板推导之SVM系列等资料后写的笔记。1. SVM简介SVM是Support Vector Machine的简称,即支持向量机。它是一种二分类算法。在深度学习出现之前,SVM因为其在处理二分类问题上的优越表现,成为最流行的分类算法之一。在研究领域,常说SVM有三宝,即:间隔margin...
2020-05-01 20:51:00 490
原创 机器学习笔记-Task04-条件随机场CRF(Conditional Random Field)
文章目录前言1.相关概念1.1有向图 VS 无向图1.1.1有向图1.1.2无向图1.2 生成模型 VS判别模型1.2.1 生成模型(generative model)1.2.2判别模型(discriminative model)2.隐Markov模型(HMM)2.1Markov过程2.2 隐Markov模型2.2.1 两大假设2.2.2五个要素2.3问题3.MEMM(最大熵Markov模型)3....
2020-04-29 23:50:38 953
原创 机器学习笔记-Task03-极大似然估计&EM算法
参考资料1.如何通俗理解EM算法2.你真的了解EM算法吗?3.Do C B, Batzoglou S. What is the expectation maximization algorithm?[J]. Nature biotechnology, 2008, 26(8): 897-899.
2020-04-26 19:25:27 1026
原创 机器学习笔记-Task02-朴素贝叶斯
这里写目录标题1.贝叶斯原理1.1相关概念1.1.1正向概率1.1.2逆向概率1.2 具体例子加深理解1.2.1 先验概率1.2.2 条件概率1.2.3 后验概率2.朴素贝叶斯2.1何为“朴素”2.2朴素贝叶斯算法2.3 朴素贝叶斯算法的工作过程2.4 朴素贝叶斯算法的分类参考资料1.贝叶斯原理贝叶斯原理是一个数学基础,人们利用该原理,设计出了贝叶斯分类器,而朴素贝叶斯是这类分类器中的一种形式...
2020-04-23 20:42:39 715
原创 机器学习笔记-Task01-线性回归
文章目录线性回归单变量线性回归多变量线性回归求解目标函数优化方法评价指标如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入线性回归回归问题多用于预测一个数值,如明天的气温;房屋的价格;产品的销...
2020-04-21 20:10:21 413
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人