深度学习
文章平均质量分 75
深度学习入门图书,笔记中将会有相关知识点的总结,满满干货!
鬼才的凝视
SHARE
展开
-
《深度学习入门》第八章:深度学习
同志们,最后一章了哦~~~~本章主要介绍采用深度学习方法实现对MNIST数据集的识别。大家可能好奇,MNIST数据集以及书中第三章的编程代码怎么没有,我也是查了网上很多资料,都没有和书上匹配的,就在刚才,突然发现书皮后面有个二维码,就是下图,扫码就可以下载,真是呜呜呜了~~~当时找的好辛苦!!!...原创 2022-03-05 11:40:40 · 2577 阅读 · 1 评论 -
《深度学习入门》第七章:卷积神经网络
当当当当!!!终于到正题了!!!1. CNN(convolutional neural network, CNN):同样通过组装层实现,不过新出现了卷积层(convolution层)和池化层(pooling层)2. 为什么要用卷积层(convolution):全连接层缺点:数据的形状被“忽视”,如:输入数据是图像时,其高、长、通道方向上的3维数据需要拉平至1维数据。而3维形状中含有重要的空间信息,如:空间上相邻的像素为相似的值、RGB的各个通道之间分别有密切的关联性、相距较远的像素之间没有什原创 2022-03-04 22:54:39 · 808 阅读 · 0 评论 -
《深度学习入门》第六章:与学习相关的技巧
复习知识:最优化:寻找最优参数,解决这个问题的过程的方法即最优化。随机梯度下降法(stochastic gradient descent ,SGD):为找到最优参数,将参数的梯度作为线索,沿梯度的方向更新参数,并重复步骤多次,从而逐渐靠近最优参数的过程。即:用右边的值更新左边的值,SGD是朝着梯度方向只前进一定距离的简单方法。缺点:如果函数的形状非均向(anisotropic),比如呈延伸状,搜索的路径就会非常低效。根本原因是:梯度的方向并没有指向最小值的方向。如下图:改进方法:Momen原创 2022-03-04 20:41:22 · 481 阅读 · 0 评论 -
《深度学习入门》第五章:误差反向传播法
好久没更了,不过这回是学完了整本书,一下子更新4章完事儿。欢迎大家给出意见和建议呀!!!1. 误差反向传播法:是能够高效计算权重参数的梯度方法,可以通过反向传播高效计算导数。正确理解该方法:一是基于数学式:严密简洁;二是基于计算图(该章重点):直观。2. 计算图:大致如下图所示,虚灰线代表正向传播,黑实线代表反向传播:将局部导数从右向左传递,原理是基于链式法则的(可以通过黑实线下面数字高效计算导数)。反向传播导数运算原理如下:3. 链式法则:引入复数运算来解释,如下图所示:原创 2022-03-04 18:41:48 · 780 阅读 · 0 评论 -
《深度学习入门》第四章:神经网络的学习
“学习”目的:从训练数据中自动获取最优权重、偏置参数,使得损失函数达到最小。▲注:若有100个训练数据,要把100个损失函数的总和作为学习的指标。即:假设有N个数据,tnk表示第n个数据的第k个元素的值,ynk是神经网络的输出,tnk是监督数据。得到E为单个数据的平均损失函数。▲注:为使损失函数达到最小,需要计算权重、偏置参数的导数(准确的说是梯度),然后以这个导数为指引,逐步更新参数的值。●若导数值为负,改变参数向正向变化,减小损失函数值;若导数值为正,改变参数向负向变化,减小损失函数值。.原创 2022-02-08 23:14:16 · 2057 阅读 · 0 评论 -
《深度学习入门》第三章:神经网络
写在前面:由于本书的前两章内容比较基础,所以专栏中没有整理相关知识点,但不影响对本书的学习哦~~~感知机:可以表示复杂函数,但是设定权重的工作还是由人来完成。神经网络:自动的从数据中学习到合适的权重参数。● 朴素感知机:单层网络(权重层数),指激活函数为 阶跃函数。●多层感知机:神经网络,即使用sigmoid函数等平滑的激活函数的多层网络。这里是引用激活函数:将输入信号的总和转换为输出信号,作用在于决定如何来激活输入信号的总和。●Sigmoid函数:很早就被使用。●ReLU原创 2022-02-08 23:02:17 · 735 阅读 · 0 评论