分治法之矩阵乘法

分治法及Strassen方法做矩阵乘法

矩阵乘法:我们先约定用于乘法的矩阵与结果矩阵都是nn的矩阵
比较直观的算法就是<算法导论>中给出的伪代码使用三个循环来完成:
SQUARE-MATRIX-MULTIPLY(A,B)
1 n = A.rows
2 let C be a new n×n matrix
3 for i = 1 to n
4 for j = 1 to n
5 cij = 0
6 for k = 1 to n
7 cij = cij + ajk·bkj
8 return C
三个for循环 很明显,这个方法的复杂度是O(n³)
还是非常直观的。
我们尝试得用分治法去解决一下矩阵的乘法
我们的策略是将矩阵的行和列从n/2处分开,划出四个更小的矩阵
在这里插入图片描述
在这里插入图片描述
再递归调直到划到最小1×1的矩阵为止
在这里插入图片描述
书上是直接用下标来指定子矩阵的,我试着写了一下,太渣了写不出来。。。
查了一下人家的代码
https://blog.csdn.net/Kigznlun/article/details/79942950
这个哥们写出来了,但是好像不是只用下标的写法,而是拷贝进了中间数组。Strassen方法他也写出来了,可以参考一下。
这个方法中
由于一共八次递归调用SQUARE-MATRIX-RECURSIVE n
n的矩阵变为n/2n/2的矩阵,切还要实现两次加法。矩阵分为n/2n/2矩阵之后,有n²/4个元素还需要进行四次加法运算。
因此总复杂度为T(n)=8T(n/2)+O(n²)
用主定理算出来复杂度为O(n³)
Strassen算法
他先定义了7个矩阵
在这里插入图片描述
而最后的矩阵C可以通过这七个矩阵直接相加减得到
在这里插入图片描述
前面分治法的复杂度主要来源于乘法运算,所以Strassen方法减少了乘法的次数。一共有七次。
因此复杂度变为T(n)=7T(n/2)+O(n²);
想比较两个的大小可以用递归树或者主定理计算。
主定理算出来复杂度为O(nlog7)
相对于分治法O(n3)有一定提升

  • 2
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值