Chat-REC——基于 LLM 的推荐系统算法解析

导言

论文地址:https://arxiv.org/pdf/2303.14524.pdf

在当前的大数据时代,当我们搜索或选择产品时,推荐系统被广泛使用。

由于不可能从无数产品组中手动搜索产品,因此需要一个能自动提取和推断用户偏好并据此推荐优质产品的系统。

然而,在模型设计和数据分布偏差方面仍存在各种问题。

例如,缺乏用户友好性,如互动性和可解释性;冷启动问题,降低了对新用户和新项目推荐的准确性;以及跨产品领域推荐的困难。

如今风靡全球的大型语言模型(LLM)有望解决这些问题。

这是因为 LLM 提供了清晰的描述,可以处理跨产品领域的跨领域信息,充分利用其内部掌握的大量信息。

此外,法律硕士还善于与用户互动,这可以改善用户体验。

本文介绍了一种利用上下文学习将 LLM 扩展为推荐系统的方法,无需训练。

算法实现

连接推荐系统和 LLM

传统的推荐系统通过从点击历史和购买历史等用户数据中提取用户偏好来进行推荐。

另一方面,自然语言处理技术显然具有扩展推荐系统的潜力,它可以从评论和 SNS 帖子等基于文本的内容以及文本中的自然回复中提取用户偏好。

在本文中,我们提出了一个基于 ChatGPT 的推荐系统 Chat-REC,该系统可以同时跟踪这两种信息流。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

知来者逆

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值