文章目录
概述
CUDA和cuDNN是由NVIDIA提供的两个关键软件库,用于利用NVIDIA GPU进行高性能计算和深度学习加速。
CUDA是一个由NVIDIA开发的并行计算平台和编程模型,用来加速计算密集型任务
cuDNN是一个GPU加速的深度学习库,是许多深度学习框架(如 TensorFlow、PyTorch、MXNet 等)中不可或缺的组件,因为它能够极大地提高深度学习任务的性能。
简单来说,CUDA 是一个通用的GPU编程平台,而cuDNN则是基于CUDA之上的一个专门用于深度学习的优化库。
安装前提:必须有一块支持CUDA的英伟达显卡,如果电脑没有英伟达显卡,那没办法使用哦。
接下来我将手把手教你们安装cuda和cudnn
一、cuda安装
1.查询自己电脑可支持最高cuda版本是多少
在终端输入nvidia-smi命令,查询可支持的最高cuda版本,驱动是向下兼容的,我电脑可支持最高版本的cuda为12.2,所以安装cuda版本小于等于12.2的都可以安装上。(如果想安装的cuda版本不在可支持的cuda版本内,则可以考虑升级显卡驱动,从而实现对cuda高版本的安装,去官网下载你电脑对应显卡的驱动程序:https://www.nvidia.cn/Download/index.aspx?lang=cn)
显卡驱动更新教程如下:注意注意注意:如果你电脑不需要更新显卡驱动,那就跳过显卡驱动更新教程哦
1.查看自己电脑显卡型号
在搜索框输入设备管理器并打开
我的型号如下:
2.复制上面的显卡驱动下载地址
查找自己的显卡型号
3.下载完成直接双击安装
安装超级简单,直接下一步下一步就行,安装完成之后重启电脑,在终端输入nvidia-smi命令,来查看可支持的最高cuda版本
2.cuda安装包下载
下载前需要确定自己需要安装的pytorch版本号是多少,根据下面表格来选择合适版本的cuda和cudnn
cuda与cudnn对应的版本表格:
cuda、CUDAToolkit与pytorch对应的版本
点击这个链接进行下载:CUDA下载地址
需要注意:30系列显卡的需要cuda11及以上的版本,我电脑显卡是3070,所以需要安装大于等于cuda11的版本,我选择cuda11.3版本的进行下载
3.cuda安装
双击安装包安装
点击展开,取消Visual Studio Integration
安装完成
4.查看cuda是否自动添加到环境变量里面,没有就手动添加
此电脑–>属性
点击高级系统设置–>查看环境变量
在系统变量,看到cuda是自动添加到环境变量里面的,如果你发现没有则需要自己手动添加
有的小伙伴说没有自动生成,没有生成的手动添加就行,
变量如下:
11_3_填自己的cuda版本号,比如你是cuda11.0改成11_0_
CUDA_PATH
CUDA_PATH_V11_3
NVCUDASAMPLES_ROOT
NVCUDASAMPLES11_3_ROOT
值的话修改成自己的路径。
5.验证cuda是否安装成功
在终端输入nvcc -V命令,输出版本号代表安装成功
二、cudnn安装
1.cudnn安装包下载
下载前需要确定自己需要安装的pytorch版本号是多少,根据下面表格来选择合适版本的cuda和cudnn
cuda与cudnn对应的版本表格:
cuda、CUDAToolkit与pytorch对应的版本
点击这个链接进行下载:cudnn下载地址
需要注册一个账号才可以下载,随便注册就行
需要注意:看表格找到对应版本的cudnn,我安装cuda版本是11.3,所以需要安装8.2.0或者8.2.1都行
找到cudnnv8.2.0,for CUDA 11.x 表示这个cuDNN版本是 CUDA 11.x 版本系列兼容的。CUDA11.x 系列包括了 11.0、11.1、11.2 、11.3等具体版本,x 表示任何小版本号
2.cudnn安装
cuDNN是以压缩包的形式提供的
之后找到路径为:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.3的文件夹,v11.3是我安装cuda的版本号,你的可能不一样,路径都差不多一样的
3.验证cudnn是否安装成功
cmd进入目录:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.3\extras\demo_suite
终端输入:deviceQuery.exe
如果结果为pass证明安装成功
到此安装结束
总结
创造不易,对你有帮助请点个小爱心,谢谢