概要
- 最优化条件
- 可微函数的KKT条件
- 最优化条件:例题
- 不可微函数的KKT条件
最优化条件
最优化理论研究的最基本的最优化问题有以下的形式
m i n x f ( x ) s . t . h i ( x ) = 0 , i = 1 , . . . m g j ( x ) ≤ 0 , j = 1 , . . . r \begin{align*} \underset{x}{min} \space &f(x) \\ s.t. \space &h_i(x)=0, \space i=1,...m \\ &g_j(x) \leq 0, j=1,...r \end{align*} xmin s.t. f(x)hi(x)=0, i=1,...mgj(x)≤0,j=1,...r
我们有目标函数 f ( x ) f(x) f(x),及m个等式约束条件,r个不等式约束条件。
需要考虑的第一个问题就是,以上这个问题的最优解需要满足什么条件?最优性必要条件如下
定理1:最优性必要条件
h i \\h_i hi是一次函数, g j g_j gj是凸函数,存在 x ∗ x^* x∗使得 g j ( x ∗ ) < 0 , h i ( x ∗ ) = 0 g_j(x^*)<0,h_i(x^*)=0 gj(x∗)<0,hi(x∗)=0
∇ h i ( x ∗ ) \\\nabla h_i(x^*) ∇hi(x∗)和 ∇ g j ( x ∗ ) \nabla g_j(x^*) ∇gj(x∗)线性无关若 x ∗ x^* x∗是局部最小解,则存在满足KKT条件的拉格朗日乘数 ( λ ∗ , μ ∗ ) (\lambda^*,\mu^*) (λ∗,μ∗),使得 ( x ∗ , λ ∗ , μ ∗ ) (x^*,\lambda^*,\mu^*) (x∗,λ∗,μ∗)是KKT点。
换句话说,如果 x ∗ x^* x∗是最优解,那就必须满足KKT条件。
∇ \nabla ∇是偏导的意思, 其中KKT条件如下
∇ f ( x ∗ ) + ∑ i = 1 m λ i ∗ ∇ h i ( x ∗ ) + ∑ j = 1 r μ j ∗ ∇ g i ( x ∗ ) = 0 \begin{equation} \nabla f(x^*)+\sum_{i=1}^m\lambda _i^* \nabla h_i(x^*)+\sum_{j=1}^r\mu _j^* \nabla g_i(x^*)=0 \end{equation} ∇f(x∗)+i=1∑mλi∗∇hi(x∗)+j=1∑rμj∗∇g