最优化理论极简入门(第一部分):最优化条件和KKT条件

本文简要介绍了最优化理论,重点讲解了KKT条件,包括可微和不可微函数的情况,并通过实例解释了如何求解无约束和有约束的优化问题。文章最后提到了拉格朗日对偶问题作为后续内容。
摘要由CSDN通过智能技术生成

概要

  • 最优化条件
    • 可微函数的KKT条件
  • 最优化条件:例题
    • 不可微函数的KKT条件

最优化条件

最优化理论研究的最基本的最优化问题有以下的形式
m i n x   f ( x ) s . t .   h i ( x ) = 0 ,   i = 1 , . . . m g j ( x ) ≤ 0 , j = 1 , . . . r \begin{align*} \underset{x}{min} \space &f(x) \\ s.t. \space &h_i(x)=0, \space i=1,...m \\ &g_j(x) \leq 0, j=1,...r \end{align*} xmin s.t. f(x)hi(x)=0, i=1,...mgj(x)0,j=1,...r

我们有目标函数 f ( x ) f(x) f(x),及m个等式约束条件,r个不等式约束条件。

需要考虑的第一个问题就是,以上这个问题的最优解需要满足什么条件?最优性必要条件如下

定理1:最优性必要条件


h i \\h_i hi是一次函数, g j g_j gj是凸函数,存在 x ∗ x^* x使得 g j ( x ∗ ) < 0 , h i ( x ∗ ) = 0 g_j(x^*)<0,h_i(x^*)=0 gj(x)<0hi(x)=0
∇ h i ( x ∗ ) \\\nabla h_i(x^*) hi(x) ∇ g j ( x ∗ ) \nabla g_j(x^*) gj(x)线性无关

x ∗ x^* x是局部最小解,则存在满足KKT条件的拉格朗日乘数 ( λ ∗ , μ ∗ ) (\lambda^*,\mu^*) (λ,μ),使得 ( x ∗ , λ ∗ , μ ∗ ) (x^*,\lambda^*,\mu^*) (x,λ,μ)是KKT点。

换句话说,如果 x ∗ x^* x是最优解,那就必须满足KKT条件。

∇ \nabla 是偏导的意思, 其中KKT条件如下
∇ f ( x ∗ ) + ∑ i = 1 m λ i ∗ ∇ h i ( x ∗ ) + ∑ j = 1 r μ j ∗ ∇ g i ( x ∗ ) = 0 \begin{equation} \nabla f(x^*)+\sum_{i=1}^m\lambda _i^* \nabla h_i(x^*)+\sum_{j=1}^r\mu _j^* \nabla g_i(x^*)=0 \end{equation} f(x)+i=1mλihi(x)+j=1rμjg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值