自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

人工智能研究所的博客

专注人工智能领域分享

  • 博客(319)
  • 收藏
  • 关注

原创 NLP领域的Transformer是如何进军CV计算机视觉领域的——VIT模型

自从transformer模型发布之后,各种基于transformer模型的研究与论文层出不穷,既然transformer模型这么火,且在NLP领域这么大放异彩,那么transformer模型的attention注意力机制是否可以使用在计算机视觉领域那,Google团队按照标准的transformer模型杀进CV计算机视觉领域,并发表了vision transformer论文,让transformer模型进军了CV领域,本期我们就介绍一下vision transformer模型,看看attention注意力

2026-01-28 11:45:00 3

原创 DeepSeek V4 发布在即,Engram 框架提前开源,为何能修复 LLM 失忆症

摘要:DeepSeek推出的Engram技术通过分离静态记忆与动态推理,解决了传统Transformer架构在处理简单事实时浪费算力的问题。该技术采用分词器压缩、多头哈希和上下文感知门控三项创新,实现O(1)级知识查找。研究发现20%-25%参数分配给Engram能获得最佳性能,270亿参数模型表现优于传统MoE。Engram不仅提升记忆能力,还显著增强逻辑推理(BBH任务提升5.0)和长文本处理(NIAH准确率达97.0%),同时突破GPU显存限制,支持百亿级参数卸载到CPU内存。这一突破标志着稀疏架构进

2026-01-27 11:45:00 1345

原创 谷歌发布 Nested Learning:颠覆Transformer模型的下一代框架

《Nested Learning:挑战Transformer的新学习框架》 Google Research团队在NeurIPS 2025发表论文《Nested Learning》,提出颠覆Transformer的全新学习范式。该研究指出传统深度学习的"深度"只是表象,真正突破在于多级嵌套优化问题。论文创新性地将神经科学的多时间尺度处理机制引入机器学习,开发了包含HOPE模块的嵌套学习框架(NL)。实验表明,HOPE在持续学习、长上下文推理等任务上显著优于Transformer,1.3B参

2026-01-26 11:45:00 1448

原创 ChatGPT Health 重磅登场:OpenAI 发布 AI 时代的私人健康助手

ChatGPT推出全新健康功能,整合个人医疗数据提供精准健康管理。该功能通过加密技术安全连接电子病历和健康App,可解读体检报告、生成就诊问题清单并提供饮食运动建议。OpenAI与260多位医生合作开发,采用独立存储确保隐私安全。目前在美国小范围测试,支持Apple Health等主流健康应用,旨在成为用户的"健康助手"而非替代专业医疗。

2026-01-23 11:45:00 1713

原创 腾讯 ima 支持生成 PPT,Anygen,NotebookLLM 为何都在主攻此领域?

腾讯imaCopilot、字节AnyGen和谷歌NotebookLM三大AI知识平台各具特色:ima以知识沉淀为核心,支持个人到团队的知识共享;NotebookLM专注深度研究,严格基于源文件提供精准分析;AnyGen则强调语音驱动和闭环交付,快速生成可直接使用的专业成果。它们分别代表了知识管理、研究辅助和效率提升的不同方向,为用户提供了多样化的AI知识工作解决方案。

2026-01-22 11:45:00 998

原创 Pytorch代码实战Transformer模型——基于英译汉机器翻译数据集

本文详细介绍了使用Transformer模型实现机器翻译的完整流程。首先构建了一个小型中英对照数据集,通过词表映射将文本转换为数字序列。然后逐步实现了Transformer的核心组件:多头注意力机制、位置编码、前馈神经网络等。编码器和解码器各包含6层结构,通过自注意力和交互注意力处理输入输出。模型训练采用交叉熵损失函数和SGD优化器,经过100轮训练后loss降至0.0005左右。最后使用贪心算法进行预测测试,成功将"人工智能"翻译为"artificial intelligen

2026-01-21 11:45:00 251

原创 从 0 开始学习人工智能:生成式人工智能 (AIGC)的工作原理

摘要: 生成式AI正重塑工作与生活,成为效率、创意和数据分析的“超级外挂”。它能快速处理机械任务(如文案生成)、激发创意灵感(如设计提案)、精准分析海量数据(如用户反馈),并提供24/7的个性化服务(如智能客服)。AI的进化历经三阶段:通过预训练学习海量知识,微调优化专业能力,再借助RAG技术实时检索信息避免“幻觉”。尽管AI在文字和图像领域表现卓越,视频生成仍面临动态连贯性挑战。从早期聊天程序到如今具备“记忆”的AI,技术发展正推动机器从工具向“创意伙伴”进化。

2026-01-20 11:45:00 1516

原创 从 0 开始学习人工智能:什么是生成式人工智能 (AIGC)?

生成式AI是一种能够自主创作内容的人工智能技术,可以生成文本、图像、音乐、代码等原创内容。它基于大语言模型和深度学习,通过模仿人脑思维方式,从海量数据中学习并推演新内容。2022年ChatGPT的推出标志着生成式AI进入爆发期,现已被广泛应用于文案创作、艺术设计、音乐制作、编程辅助、科研模拟等多个领域。尽管存在安全性和伦理风险,但全球企业正加速AI化转型。生成式AI的发展经历了从早期聊天机器人到现代"超级大脑"的演变,未来将持续推动各行业生产力变革。

2026-01-19 11:45:00 1955

原创 为什么 AI 视频总是换脸?字节跳动StoryMem,解决 AI 视频角色一致性

现在的 AI 视频模型就像只有“7 秒记忆”的小金鱼 。:上一秒主角还是个穿红裙子的金发女孩,下一秒镜头一换,她居然变成了穿牛仔裤的棕发御姐 。这种“角色大变脸”的尴尬,就是目前 AI 视频生成的最大痛点。

2026-01-16 11:45:00 1580

原创 DeepSeek 新论文 mHC:流形约束超连接——到底是什么?

摘要:DeepSeek提出流形约束超连接(mHC)解决大模型训练稳定性问题。传统残差连接在超大模型中成为带宽瓶颈,而超连接(HC)方案虽提升性能却破坏了恒等映射特性。mHC创新性地将HC连接空间投影到伯克霍夫多面体流形上,通过双随机矩阵确保信号稳定传输,同时结合TileLang等系统优化,仅增加6.7%训练时间就实现了4倍残差路径拓宽。该方案在数学推理等任务上表现优异,为万亿参数模型提供了可行的架构进化方向。

2026-01-15 07:30:00 847

原创 Transformer模型综述——从模型搭建到模型训练与模型预测

Transforme是一种使用Attention注意力机制的模型,其模型最核心的便是Transformer模型中的多头注意力机制,且模型显著提高了NLP领域中的各项任务。Transformer模型最初是在论文Attention is all you need中介绍的,论文一经发布,就迅速成为大多数NLP领域应用程序的领先架构。

2026-01-14 07:30:00 25

原创 腾讯混元开源 Motion 1.0 动作生成模型,一句话让虚拟人物动起来

腾讯混元团队发布HY-Motion1.0模型,通过AI实现自然3D动作生成。该模型采用十亿参数DiT架构和流匹配技术,经过三阶段训练(预训练、微调、强化学习),能精准理解文字指令并生成流畅动作。支持200多种动作类别,大幅降低3D动画制作门槛。目前模型已开源,或将开启3D动画大模型时代。

2026-01-13 11:45:00 681

原创 字节发布“音画同出“ AI 模型,快速成片,拍电影像发朋友圈一样简单

字节跳动Seed团队发布Seedance1.5pro视频生成模型,实现原生音画同步创作。该模型突破传统AI视频生成局限,能根据文字描述自动生成包含方言配音、专业运镜和情绪连贯的电影级短片。核心技术包括:双分支扩散Transformer架构实现音画实时同步;多方言口型精准对齐;支持希区柯克变焦等专业运镜;推理速度提升10倍以上。应用场景涵盖短视频创作、影视预演、文化保护等,有望降低专业视频制作门槛,让创意表达更自由。

2026-01-12 07:30:00 562

原创 Space X 硬件工程师都在用的 AI 设计电路工具,几分钟搞定3周工作量

Quilter是一款革命性的AI电路板设计工具,采用强化学习技术自动优化PCB布局布线。不同于传统自动布线器,它能同时生成上百种方案,综合考虑信号完整性、散热等物理因素,将复杂电路板设计时间从数周缩短至几天。该工具已获SpaceX等公司采用,可将工程师从繁琐布线中解放,专注系统架构设计。创始人预言,未来手动设计PCB将像手写代码一样过时。目前处于免费测试阶段,有望彻底改变硬件设计流程。

2026-01-10 11:45:00 1945

原创 阿里开源全模态模型Qwen3-Omni-Flash:图片,文字,音频,视频全搞定

Qwen3-Omni-Flash突破多模态AI交互瓶颈,实现全感官实时响应。该模型采用Thinker-Talker创新架构,在36项音视频测试中取得32个开源第一,响应速度达毫秒级(音频211ms/视频500ms)。其核心技术包括2000万小时训练的AuT编码器、MoE专家系统和多码本流式生成,支持119种语言交互和30分钟长音频理解。相比传统AI的割裂处理流程,Qwen3-Omni能同步理解并自然回应多模态输入,在保持核心智能的同时实现个性化风格定制,为教育、创作、无障碍服务等领域带来革新体验。

2026-01-09 11:45:00 879

原创 Apple 发布 SHARP 模型,1 秒内让你的照片瞬间“3D立体”起来

苹果SHARP技术突破:1秒将平面照片变3D 苹果最新研发的SHARP技术实现了革命性突破,能在1秒内将普通2D照片转化为高质量3D模型。这项技术采用创新的3D高斯泼溅算法,通过120万个彩色"高斯球"精确重建场景细节,支持每秒100帧的流畅视角转换。相比传统方法,SHARP在视觉质量上提升25-34%,处理速度提升上千倍,且能智能预测被遮挡物体的空间关系。这项技术将彻底改变照片浏览方式,未来用户可通过轻微头部动作体验照片中的立体世界,为VR/AR应用、设计创作等领域带来全新可能。

2026-01-08 10:00:00 748

原创 字节跳动这款“万能”AI工具一出,NotebookLLM都要汗流浃背了?

字节跳动推出AI神器AnyGen,可一键将零散内容转化为精美PPT、网页、绘本等成品。该工具具备三大核心能力:1)"炼金术"式一键生成,输入文字/语音即可输出各类成品;2)多模态理解力,能处理语音、图片等杂乱信息;3)可视化创作,自动完成插画、网页构建等。AnyGen让普通人摆脱技术门槛,只需提供创意即可快速产出专业作品,大幅提升工作和创作效率。目前该工具已开放试用,或将改变未来内容生产方式。

2026-01-07 11:45:00 1852

原创 代码实战 Transformer 模型,从头搭建 decoder 解码器层

本文详细介绍了Transformer模型解码器(decoder)的代码实现过程。解码器与编码器结构类似,但增加了sequence mask矩阵以屏蔽未来信息,并多了一层encoder-decoder交互注意力层。文章首先讲解了单层DecoderLayer的实现,包括自注意力机制、交互层和前馈网络;然后扩展到6层Decoder结构,重点说明了mask矩阵的计算方法;最后整合编码器和解码器完成整个Transformer模型的搭建,模型输出是每个单词在词汇表上的概率分布。代码实现中包含了位置编码、多头注意力等关键

2026-01-07 11:00:00 344

原创 显卡 6G 也能跑,阿里开源新模型,凭什么说吊打 Flux 让设计师疯狂?

阿里云开源Z-Image-Turbo-Fun-Controlnet-Union(简称Z-Controlnet),一款轻量级AI绘图工具,仅60亿参数却支持多条件精准控制。该工具可在RTX4080上9秒生成1024x1024高清图,支持姿势、边缘、深度等联合控制,显存需求仅6GB,老显卡和Mac均可流畅运行。其多条件输入能力解决了传统AI绘图不可控的问题,为电商、游戏开发等领域提供高效解决方案,大幅降低专业级图像创作门槛。

2026-01-06 10:00:00 791

原创 Nano Banana Pro官方出品 7 大技巧,助力你的图片生成与编辑技巧

NanoBananaPro是基于谷歌Gemini3的AI图像生成工具,具备专业级设计能力。文章介绍了7大使用技巧:1)通过5W法则构建详细提示词;2)添加专业摄影参数;3)实现完美文本渲染;4)运用真实物理认知;5)支持智能翻译;6)专业布光与运镜;7)灵活画幅与材质模拟。提供了黄金公式"主题+构图+动作+地点+风格+细节"的提示词编写方法,同时指出工具在细节处理上仍有改进空间。该工具显著提升了AI图像生成的精准度和专业性。

2026-01-05 11:45:00 746

原创 200倍提速!清华开源TurboDiffusion,普通显卡也能秒出大片

清华团队开源TurboDiffusion框架,实现AI视频生成速度100-200倍提升。该技术通过注意力加速、步数蒸馏和W8A8量化三大创新,将传统需数小时的视频生成缩短至秒级。例如14B模型生成720P视频从4767秒降至24秒,RTX5090显卡即可运行。这一突破使高质量AI视频生成从实验室走向消费级设备,为短视频创作、影视预览等场景带来革命性变革,标志着AI视频进入"瞬时生成"时代。

2026-01-03 11:30:00 804

原创 一人就是一个团队,Google Labs 这几个 AI 工具竟串起一条完整产品链

Google推出AI工具套件赋能创意工作:NotebookLM可智能解析多源资料并生成播客式摘要;Flow搭载Veo3模型实现专业级视频制作;Jules作为智能编程助手能独立完成代码开发;Stitch、Mixboard等工具分别处理UI设计、配乐生成等细节;Doppl提供数字分身功能。这套工具链将传统需要多人协作的创意流程简化为个人可完成的AI协同作业,显著降低技术门槛,使创作者能更专注于核心创意而非执行细节。

2026-01-02 11:30:00 1392

原创 计算机视觉鼻祖,从头搭建一个 CNN 卷积神经网络

卷积神经网络(CNN)是一种使用卷积层的神经网络,其核心是通过滤波器对输入图像进行卷积运算。卷积层利用3×3等大小的滤波器在图像上滑动,逐元素相乘后求和生成特征图,可有效检测边缘等局部特征。CNN通过填充(padding)保持输入输出尺寸一致,并通过池化层(如最大池化)压缩特征图减少冗余。最终结合全连接层和Softmax分类器输出预测概率。CNN参数量少但能提取丰富特征,在图像识别中表现优异。

2026-01-01 11:45:00 27

原创 代码实战 Transformer 模型,从头搭建 encoder 编码器层

本文详细介绍了Transformer模型的核心模块实现,包括词嵌入层、位置编码、注意力机制(PadMask和SequenceMask)、多头注意力、残差连接与归一化、前馈神经网络等。通过代码演示了单层Encoder的实现过程,包括输入处理、注意力计算和前馈网络。文章还展示了如何构建6层Encoder结构,使用ModuleList循环堆叠编码层,并保留注意力矩阵用于可视化。最后输出了编码器的计算结果和维度信息,为后续Decoder实现奠定了基础。全文采用图文与视频结合的方式,系统讲解了Transformer各

2025-12-31 11:45:00 37

原创 Google 2025 年度总结:Titans 与 MIRAS 架构:开启 AI实时记忆新时代

Google最新发布的Titans和MIRAS框架突破了当前AI模型的记忆瓶颈。Titans通过"惊喜指标"机制,像人类大脑一样选择性记忆重要信息,实现200万token长文本处理能力,在参数量远小于GPT-4的情况下实现性能反超。MIRAS则提供了统一理论框架,重新定义序列模型的记忆机制,使AI能够实时学习和更新知识。这一突破不仅解决了Transformer内存爆炸和RNN信息丢失的两难困境,更让AI向人类式记忆和持续学习迈出关键一步,为AGI发展开辟了新路径。

2025-12-30 11:45:00 915

原创 华为新作 Nexus:用盗梦空间式注意力,打破Transformer 的智商瓶颈

《Nexus:突破Transformer低秩瓶颈的高阶注意力架构》摘要 华为提出的Nexus架构创新性地解决了传统Transformer的低秩瓶颈问题。研究发现,标准自注意力机制仅能捕捉词间一阶关系,导致复杂逻辑推理(如A→B→C的间接关系)需要堆叠多层网络。Nexus通过"注意力中的注意力"机制,在计算Q/K前先进行内部递归推理,形成高阶语义理解。采用权重共享技术,该架构在不增加参数量的情况下,使Pythia-70M至1B模型性能全面提升。实测显示,改造后的Qwen2.5-7B在MAT

2025-12-27 11:45:00 754

原创 不要再膜拜 Gemini 3 Pro 了,DeepSeek V3.2 又又又重新霸榜了

DeepSeek推出V3.2版本,性能对标GPT-5并实现工具调用能力。新版本在数学竞赛等任务上超越GPT-5,API价格保持不变。V3.2-Speciale版更是在国际奥赛中达到金牌水平,与Gemini 3.0 Pro抗衡。主要升级包括:支持思考中调用工具(Tool Calls)、强化Agent能力,解决了"会思考但不会操作"的痛点。DeepSeek坚持"高性能+低成本"策略,持续推动AI技术创新,标志着智能体时代的全面到来。

2025-12-26 20:42:55 950

原创 揭秘 ChatGPT 的“灵魂”:3分钟看懂什么是 Attention 注意力机制

本文详细解析了Transformer模型中的注意力机制(Attention Mechanism),这一技术是ChatGPT等大语言模型的核心。传统编码器-解码器模型存在信息瓶颈问题,无法有效处理长序列数据。注意力机制的创新在于:保留所有输入状态供解码器参考,并通过动态权重计算实现精准聚焦。文章通过机器翻译案例,展示了注意力机制如何解决语序倒置、长距离依赖等问题,其工作流程包括查看打分、归一化、加权求和等步骤。这种机制模仿了人类的阅读习惯,使AI能够智能分配注意力,从而处理复杂语言任务。注意力机制的出现标志着

2025-12-25 11:45:00 34

原创 谷歌 Nano Banana Pro 上手实测

谷歌发布AI绘图工具NanoBananaPro(Gemini3ProImage),凭借深度思考模式、精准文字生成和搜索增强功能实现技术突破。该工具不仅能模拟物理逻辑生成图像,还能正确书写文字、保持角色一致性,并实时联网获取最新信息进行可视化创作。其"指哪改哪"的编辑方式和知识整合能力,使AI绘图从艺术创作升级为信息表达工具,展现出谷歌在AI领域的技术底蕴。

2025-12-24 11:45:00 712

原创 马斯克发了6秒视频,X平台炸锅了,Grok Image不是来画画的,是来搞事情的?

Grok推出全新图像生成功能,实现从文字到图片再到视频的"一条龙"服务。其特色包括:8秒生成视频的超快速度、语音控制创意输出、自动匹配音效等沉浸式体验。最引人注目的是"Spicy"模式,允许生成带性感元素的内容,突破了行业常规限制。马斯克将Grok深度整合到X平台,打造AI内容生态,同时重新定义AI安全标准。这一创新虽然提升了创作效率,但也带来深度伪造风险、内容质量下降等问题,引发对AI技术边界的新思考。

2025-12-18 11:45:00 948

原创 以后 P 图、做 3D 只要一句话?Meta 发布 SAM 3,普通人也能玩的黑科技

Meta发布SAM3系列AI模型,实现视觉理解能力质的飞跃。新一代SAM3不仅能识别物体,更能理解复杂概念,支持开放式文本提示分割目标,性能超越现有系统2倍。同时发布的SAM3D可从单张图像重建3D场景,已应用于电商预览等场景。Meta通过"人机混合"数据引擎训练模型,并推出在线Playground降低使用门槛。该技术已应用于Instagram创作工具和野生动物保护项目,将重塑创意工作流程。Meta通过开源策略推动视觉AI标准化,使复杂特效处理变得简单高效,标志着AI视觉进入语义理解新时

2025-12-15 11:45:00 1899

原创 硬刚谷歌 Gemini 3 Pro,OpenAI 紧急发布 GPT-5.2,性能炸裂?

摘要:OpenAI发布GPT-5.2,与Google的Gemini3Pro展开AI领域竞争。新版本具备深度思考能力,在专业任务表现超越人类专家11倍,成本仅1%。其突破包括:1)从简单对话升级为项目执行,可自动生成专业PPT等成果;2)编程能力大幅提升,能独立完成全栈开发;3)错误率降低38%,减少"幻觉"问题;4)具备超长文本处理(25万token)和精准图像识别能力。该AI定位为专业工作助手,旨在解放人类创造力,处理重复性任务。

2025-12-13 11:45:00 963

原创 Gemini 3 发布:创新 “Vibe Coding“,吊打全网,Agent 终极形态来了

谷歌发布Gemini3 AI模型,在推理能力上实现重大突破,拿下多项测试最高分。其创新点包括:1)推出"VibeCoding"概念,能理解模糊需求生成代码;2)DeepThink模式增强复杂问题解决能力;3)多模态交互更贴近真实场景。该模型不仅参数提升,更改变了人机交互方式,从工具向"思维伙伴"转变。这一突破引发对AI发展速度及其对人类影响的新思考。

2025-12-11 11:45:00 1034

原创 Meta开源“语言神器“:1600种语言ASR系统,元宇宙又要卷土重来?

Meta开源全语言语音识别系统OmnilingualASR,支持1600+种语言(含500种首次被AI识别的语言)。该系统突破性地采用70亿参数语音编码器和大语言模型架构,实现"零样本"学习新语言的能力。通过Apache 2.0许可证完全开源,包括模型家族和350种语言的语料库。这一技术突破标志着AI发展从追求极致性能转向包容普惠,使边缘语言群体首次获得数字话语权。虽然10%的错误率和商业化路径仍需优化,但该项目为濒危语言保护提供了革命性工具,展现了技术平权的可能性。

2025-12-08 07:30:00 741

原创 别读代码了,Code Wiki可视化代码,AI 聊天,代码理解从此像看小说

打听过很多程序猿,发现他们有个心照不宣的秘密:真正花在"写"代码上的时间,可能不到20%。剩下的80%?都在跟别人的(甚至自己的)代码缠斗。

2025-12-04 19:24:57 691

原创 一文读懂 Transformer:让机器真正“理解语言”的革命性模型

摘要:Transformer架构是人工智能领域的革命性突破,通过自注意力机制彻底改变了自然语言处理技术。该模型摒弃传统递归结构,实现全局并行计算,能有效捕捉长距离语义依赖。多头注意力机制让模型具备多维度理解能力,位置编码则解决了序列顺序问题。从BERT到GPT系列模型,Transformer已成为现代AI的核心基础,支持文本生成、机器翻译等多样化任务,并在视觉和多模态领域持续扩展。其高效并行训练特性使模型规模得以突破数十亿参数,推动生成式AI快速发展。掌握Transformer原理是理解当代人工智能技术的关

2025-12-02 19:32:30 59

原创 一人单挑Transformer神话,RNN卷土重来,Transformer何去何从?

在 Transformer 已统治 AI 世界七年的今天,几乎没人再质疑它的地位。无论是 GPT-5、Claude 4.5,还是 Gemini 2.5,全都建立在同一个信条上——“Attention is all you need.”

2025-11-28 11:45:00 1535 2

原创 最大开源模型Kimi K2 Thinking:开源AI“思考大师”,重塑智能边界

摘要:月之暗面(MoonshotAI)推出革命性开源模型KimiK2Thinking,具备1万亿参数和256Ktoken上下文窗口,采用MoE架构。这款"思考代理人"能自主完成200-300步复杂任务链,实现推理与工具调用的无缝衔接。在HLE等基准测试中表现优异,以44.9%成绩超越GPT-5,且训练成本仅460万美元。其突出特点包括深度推理、超长记忆、稳定行为和高性价比,标志着AI从被动响应转向主动思考的新阶段,为开源社区带来重大突破。

2025-11-26 11:45:00 608

原创 Transformer前馈神经网络--Y=Wx+b公式却是人工智能领域的核心

本文详细介绍了Transformer模型中的Feed-forward前馈神经网络模块。该模块通过两次线性变换(维度从512到2048再到512)和一次ReLU激活函数处理输入数据,同时保持输出维度与输入一致(如[2,5,512])。文章包含数学公式解析、矩阵维度变化说明和PyTorch代码实现,展示了如何通过nn.Sequential构建包含线性层和ReLU激活的网络结构,并强调了Transformer保持数据维度统一的设计特点。该模块与多头注意力、残差连接等共同构成Transformer的核心架构。

2025-11-25 11:45:00 32

原创 OpenAI 发布 GPT-5.1:8 种“人格”,变“懒”了,但更像“朋友”了

OpenAI发布GPT-5.1版本,带来两大突破性升级:首先是"自适应推理"技术,AI能根据问题难度动态调整思考强度,简单问题秒回、复杂问题深度思考;其次是新增8种对话风格,包括专业、古怪等模式,让AI更具人格化特征。新版本分为GPT-5.1 Instant(快速响应)和GPT-5.1 Thinking(深度思考)两个变体,支持自动或手动切换。这次升级标志着AI从单纯工具向人性化伙伴的转变,在保持智能的同时更注重对话温度和用户体验。

2025-11-24 12:00:00 627

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除