一键换衣,这个AI可以让你实现穿衣自由

基于图像的虚拟穿衣是一种流行且前景广阔的图像合成技术,能够显著改善消费者的购物体验,并降低服装商家的广告成本。顾名思义,虚拟穿衣任务旨在生成目标人穿着给定服装的图像。

OOTDiffusion简述

图1 虚拟换衣

基于图像的虚拟穿衣目前面临两个主要挑战:

首先,生成的图像应足够逼真和自然,以避免不和谐感。大多数最近关于虚拟试穿的研究利用生成对抗网络(GANs)或潜在扩散模型(LDMs)进行图像生成。先前基于GAN的方法通常难以生成正确的服装褶皱、自然的光影或逼真的人体。因此,更多近期的工作倾向于基于LDM的方法,这些方法有效提高了试穿图像的逼真度。

第二个关键挑战是尽可能保留服装的细节特征,如复杂的文本、纹理、颜色、图案和线条等。先前的研究执行显式的变形过程,将服装特征与目标人体对齐,然后将变形后的服装输入到生成模型(即GANs和LDMs等)中。因此,这种方法的性能极大地依赖于独立变形过程的有效性,而这一过程容易对训练数据过拟合。

图2 OOTDiffusion模型

鉴于上述问题的前景和挑战,一种新颖的基于LDM的虚拟试穿方法,称为Outfitting over Try-on Diffusion(OOTDiffusion;见图2)被提出。

  1. 首先,充分利用预训练的潜在扩散模型的优势,确保生成图像的高逼真度和自然的试穿效果,并设计了一种装配UNet模型,以在潜在空间中进一步学习服装的细节特征。
  2. 然后,OOTDiffusion提出了一种装配融合过程,以在去噪UNet的自注意力层中精确对齐服装特征与噪声人体。通过这种方式,服装特征能够顺利适应各种目标人体类型和姿势,而不会因独立变形过程而导致信息丢失或特征扭曲。

图3 OOTDiffusion 丢弃操作

  1. 此外,OOTDiffusion执行了一种装配丢弃操作,在训练中随机丢弃少量服装潜变量,以启用关于服装特征的无分类器。通过这种方法,可以简单地通过指导尺度调整服装控制对生成结果的影响,从而进一步增强OOTDiffusion方法的可控性。
  2. OOTDiffusion模型左侧部分,服装图像被编码到潜在空间,并输入到装配UNet中进行单步处理。由CLIP编码器生成的条件输入,服装特征通过装配融合被引入到去噪UNet模型中。特别是在训练过程中,对服装潜变量执行装配丢弃操作,以启用无分类器指导操作。右侧部分,输入的人体图像根据目标区域进行遮罩,并与高斯噪声拼接,作为去噪UNet的输入进行多次采样。去噪后,特征图被解码回图像空间,作为模型的试穿结果进行输出。

OOTDiffusion模型生成的效果与其他模型对比,有了较大的提升,可以从对比图可以看出,OOTDiffusion模型生成的效果并没有改变服装的特性,而其他的模型多多少少更改了服装的特性,给人的感觉并没有换上合适的衣服。

图4 模型对比

OOTDiffusion实战

OOTDiffusion是一个开源的项目,且提供了预训练模型,大家可以在GitHub上面找到相关的下载链接,下载预训练权重,然后复制整个模型空间的代码就可以实现虚拟换衣操作了。当然在实现虚拟换衣代码前,需要安装相关的第三方库以及相关的torch环境。最后可以直接使用cmd窗口中进行代码的实现。

git clone https://github.com/levihsu/OOTDiffusion
conda create -n ootd python==3.10
conda activate ootd
pip install torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2
pip install -r requirements.txt
# 只换半身衣服
cd OOTDiffusion/run
python run_ootd.py --model_path <model-image-path> --cloth_path <cloth-image-path> --scale 2.0 --sample 4

#换全身衣服
cd OOTDiffusion/run
python run_ootd.py --model_path <model-image-path> --cloth_path <cloth-image-path> --model_type dc --category 2 --scale 2.0 --sample 4

OOTDiffusion提供了2种预训练模型,半身模型与全身模型。本身模型可以换上半身服装,而全身模型,不仅可以换上半身的衣服,还可以换下半身的服装。代码执行时,需要指定模型与换的衣服。

图5 OOTDiffusion更换下半身服装

当然代码实现,需要一定的技术手段,需要稍微懂一些编程技术,而OOTDiffusion模型已经上架到了hugging face上,其hugging face提供免费使用的GUI使用界面。只需要在GUI界面上,选择或者上传自己的图片,并选择或者上传需要换的服装,点击run即可,等待一段时间后,模型会自动生成对应的换衣效果。

图6 hugging face 体验界面

图7 hugging face体验界面

当然hugging face也提供全身换衣服的模型,可以在GUI界面选择上身服装与下身服装进行换衣,或者选择一个裙子进行整体服装更换。

图8 OOTDiffusion更换裙子

图9 OOTDiffusion更换上半身服装

https://github.com/levihsu/OOTDiffusion?tab=readme-ov-file
https://arxiv.org/abs/2403.01779
https://huggingface.co/spaces/levihsu/OOTDiffusion

更多transformer,VIT,swin tranformer
参考头条号:人工智能研究所
v号:启示AI科技
 

 动画详解transformer  在线教程

 

<think>好的,用户想了解如何实现AI换衣功能,涉及深度学习、图像处理、衣服更换算法等方面。我需要结合提供的引用内容来回答这个问题。 首先,看引用1提到的OOTDiffusion模型,它使用了扩散模型,将服装编码到潜在空间,并通过装配融合引入到去噪UNet中。这应该是核心方法之一。需要解释扩散模型的基本原理,以及如何将服装特征融合到生成过程中。 然后,引用3提到卷积神经网络在图像识别和特征提取中的应用。可能需要在预处理阶段使用CNN进行人体姿态检测、服装分割等,这些是换衣的基础步骤。比如,检测人体关键点,分割出需要替换的衣物区域。 引用2提到的Normalized Cut方法,虽然主要用于图像分割,但可能在某些步骤中用于优化分割效果,确保替换的衣物与背景或其他部分自然融合。不过用户的问题主要关注换衣,这部分可能作为补充说明。 接下来,需要整理实现步骤。可能包括:1. 人体解析与服装分割;2. 服装特征编码;3. 图像生成与融合。每个步骤需要结合引用中的技术,比如使用CNN进行分割(引用3),扩散模型处理生成(引用1),以及可能的图分割优化(引用2)。 另外,引用1提到的装配丢弃操作和无分类器指导,这些技术细节可以解释为增强模型可控性的方法。需要说明这些操作如何帮助调整生成结果,让用户了解如何控制换衣效果。 还要考虑可能的问题,比如遮挡处理、光照一致性、纹理细节保留等。这里可以提到OOTDiffusion中的去噪过程和多步采样,以及CLIP编码器的作用,确保生成的服装符合人体姿态和场景。 最后,生成相关问题需要围绕技术方法、优化、应用场景等方面,比如不同算法的比较、处理遮挡的方法、实际应用中的挑战等。 需要确保回答结构清晰,分步骤解释,同时引用对应的文献。使用中文,行内公式正确,独立公式单独成段。比如在解释扩散模型时,可能需要用数学公式,但根据用户提供的示例,可能不需要太复杂的公式,保持简洁。 总结思路:先介绍整体流程,分步骤详细说明,结合引用中的技术点,最后提出相关问题。</think>[用户可见层] ### AI换衣功能的实现方法 实现AI换衣功能主要依赖**深度学习模型**与**图像处理技术**,核心步骤可分为以下几个阶段: --- #### 一、人体解析与服装分割 1. **人体姿态估计**:通过卷积神经网络(CNN)检测人体关键点,定位头部、四肢等部位,为后续服装对齐提供参考[^3]。 2. **服装区域分割**:使用语义分割模型(如U-Net)精确提取目标衣物区域,生成遮罩(mask)。例如,将上衣区域标记为待替换区域。 $$ \text{遮罩生成} = f_{\text{分割}}(I_{\text{输入}}) $$ 3. **遮挡处理**:对遮挡区域(如手臂遮挡衣物)进行插值修复,保证后续生成连贯性。 --- #### 二、服装特征编码与融合 1. **服装潜变量编码**:将目标服装图像通过编码器映射到潜在空间,例如引用[1]中提到的OOTDiffusion模型: $$ z_{\text{服装}} = E_{\theta}(I_{\text{服装}}) $$ 2. **多模态特征融合**: - 将服装潜变量$z_{\text{服装}}$与人体姿态特征结合,通过装配融合(Assembly Fusion)注入到生成模型中。 - 引用[1]提到的**装配丢弃操作**(随机丢弃部分服装特征)可增强模型泛化能力,通过调整指导尺度控制生成效果。 --- #### 三、图像生成与后处理 1. **去噪扩散模型**:基于扩散模型(如Stable Diffusion)生成换衣结果。模型输入为带噪声的遮罩人体图像,通过多步去噪逐步合成新服装: $$ x_{t-1} = f_{\text{UNet}}(x_t, t, z_{\text{服装}}) $$ - 引用[1]中右侧流程:输入噪声图像与遮罩拼接,经UNet多次采样生成高质量结果。 2. **光照与纹理适配**:利用对抗训练(GAN)或物理渲染(NeRF)调整服装光照、褶皱,使其与背景协调。 3. **边缘优化**:采用图分割方法(如引用[2]的Normalized Cut)精细化边缘融合,避免生硬过渡。 --- ### 关键技术挑战与解决方案 | 挑战 | 解决方案 | |---------------------|----------------------------------| | 服装形变适配人体姿态 | 基于关键点的空间变换网络(STN) | | 遮挡区域生成 | 引入注意力机制与上下文修复模块 | | 高分辨率细节保留 | 多尺度生成与超分辨率网络 | --- ### 典型应用场景 - **虚拟试衣**:电商平台中用户上传照片试穿不同款式。 - **影视特效**:动态视频中实时替换演员服装。 - **时尚设计**:快速生成设计稿的穿戴效果图。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人工智能研究所

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值