CNN:让计算机拥有“火眼金睛”的秘诀
想象一下,你怎么认出一张图片里的是猫还是狗?
你不会把图片所有像素点揉成一团再看。你会先注意到一些局部特征:猫有尖耳朵、胡须,狗可能有下垂的耳朵、突出的鼻子。然后,你会把这些局部特征组合起来:尖耳朵 + 胡须 + 圆脸 ≈ 猫。最后,你综合所有信息得出结论。
卷积神经网络 (CNN) 就是在模仿我们人类的这种视觉识别过程!
它不像传统神经网络那样,一开始就把图片“拍扁”成一长串数字,丢失了空间信息(比如像素点之间的邻近关系)。
CNN 通过“卷积核”(Filters/Kernels) 这种小窗口,在图片上滑动扫描,专门用来 检测局部特征。有的卷积核专门找边缘,有的找纹理,有的找特定形状(比如眼睛、鼻子)。
通过一层层的卷积,CNN 能把检测到的 低级特征(如边缘)组合成更高级的特征(如眼睛、轮廓),最后再根据这些高级特征进行判断和识