分发糖果(Java实现)

该博客讨论了一个关于糖果分配的问题,其中老师需要遵循相邻孩子评分高者获得更多糖果的原则。通过双指针和动态规划的方法,可以计算出满足条件的最小糖果总数。示例和解题思路展示了如何实现这一算法,旨在提升读者的编程思维和问题解决能力。
摘要由CSDN通过智能技术生成

题目

老师想给孩子们分发糖果,有 N 个孩子站成了一条直线,老师会根据每个孩子的表现,预先给他们评分。
你需要按照以下要求,帮助老师给这些孩子分发糖果:
每个孩子至少分配到 1 个糖果。
相邻的孩子中,评分高的孩子必须获得更多的糖果。
那么这样下来,老师至少需要准备多少颗糖果呢?

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/candy

示例1

输入: [1,0,2]
输出: 5
解释: 你可以分别给这三个孩子分发 2、1、2 颗糖果。

示例2

输入: [1,2,2]
输出: 4
解释: 你可以分别给这三个孩子分发 1、2、1 颗糖果。
第三个孩子只得到 1 颗糖果,这已满足上述两个条件

解题思路

两个数组left和right分别记录从左向右规则和从右向左规则时,每个孩子应该分的糖果数。
题目要求即为同时满足两个方向的规则,即两个数组按位取max。
最终结果要加上每个孩子至少一个糖果。(或者left,right数组初始化为1)

class Solution {
    public int candy(int[] ratings) {
        int len = ratings.length;
    	int sum = len;
    	int[] left = new int[len];
    	int[] right = new int[len];
    	for (int i = 1; i < len; i++) {
            if(ratings[i] > ratings[i-1]) {
                left[i] = left[i-1]+1;
            }
        }
    	for (int i = len-2; i>=0; i--) {
            if(ratings[i] > ratings[i+1]) {
                right[i] = right[i+1]+1;	
            }
        }
    	
    	for (int i = 0; i < len; i++) {
            sum += Math.max(left[i], right[i]);
        }
    	return sum;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fyycode

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值