深度学习入门
文章平均质量分 88
碧血洒长空
这个作者很懒,什么都没留下…
展开
-
DLT-07-正则化
本文是**深度学习入门(deep learning tutorial, DLT)**系列的第五篇文章,主要介绍一下正则化的相关知识。想要学习深度学习或者想要了解机器学习的同学可以关注公众号,我会逐步更新这一系列的文章。在机器学习中,正则化是正则化系数的过程,即对系数进行惩罚,通过向模型添加额外参数来防止模型过度拟合,这有助于提高模型的可靠性、速度和准确性。可以这么说,正则化本质上是为了防止因网络参数过大导致模型的泛化技术。原创 2023-03-14 18:50:57 · 158 阅读 · 0 评论 -
DLT-06-多元分类
本文是**深度学习入门(deep learning tutorial, DLT)**系列的第五篇文章,主要介绍一下多元分类。想要学习深度学习或者想要了解机器学习的同学可以关注公众号,我会逐步更新这一系列的文章。原创 2023-03-12 22:37:33 · 140 阅读 · 0 评论 -
DLT-05-二元分类
机器学习分类通过训练集进行学习,建立一个从输入空间 X 到输出空间 Y(离散值)的映射。按输出类别(标签)不同,可以分为二元分类(Binary Classification)、多元分类(Multi-Class Classification)。本文以二元分类为例,介绍一下机器学习在分类问题中的应用。原创 2023-03-10 22:26:24 · 588 阅读 · 0 评论 -
DLT-04-非线性回归
正如线性回归的含义就是研究变量之间存在怎样的线性关系,非线性回归同样是研究变量之间存在怎样的关系,只是这种关系不再是线性的了。求解非线性回归的方法有很多,在这里只介绍比较简单常用的一种方法,即将非线性回归问题转化为线性回归问题进行求解。原创 2023-03-03 20:20:46 · 840 阅读 · 0 评论 -
DLT-03-多元线性回归
多元线性回归和一元线性回归的模型表达基本一致,区别只在于输入的变量个数更多。因此,二者在假设函数和梯度下降方面有些区别,本文会在上一篇一元线性回归的基础上对其进行详细介绍。为了准确的衡量模型的精度,本文介绍了最小二乘法,使用该方法计算出的假设函数能最小化使损失函数的值。此外,多个变量的量纲不一定一致,因此本文还会介绍一下无量纲化在机器学习中的作用。原创 2023-03-02 23:24:40 · 197 阅读 · 0 评论 -
DLT-02-一元线性回归
在介绍深度学习之前,我们需要了解一些神经⽹络训练的基础知识。为了更容易学习,我们将从经典算法——线性神经⽹络开始,首先介绍一元线性回归,逐步扩展到多元线性回归和非线性回归。经典统计学习技术中的线性回归和`softmax`回归都可以视为线性神经⽹络,这些知识将为本系列教程其他部分中更复杂的技术奠定基础。原创 2023-02-27 22:39:45 · 230 阅读 · 0 评论 -
DLT-01-前言
本文是**深度学习入门(deep learning tutorial, DLT)**系列的第一篇文章,主要介绍一下该系列的创作思路、目标读者、参考书目等内容。想要学习深度学习或者想要了解机器学习(深度学习的基础)的同学可以关注公众号`GeodataAnalysis`,我会逐步更新这一系列的文章。原创 2023-02-26 23:39:40 · 101 阅读 · 0 评论