GIS数据处理
文章平均质量分 78
碧血洒长空
这个作者很懒,什么都没留下…
展开
-
【无标题】
在地理信息系统(GIS)和遥感领域,栅格数据和点数据是两种常见的数据类型。栅格数据通常用于表示连续的地理现象,如地形、气温、降雨量等,而点数据则用于表示离散的地理特征,如监测站、采样点等。将栅格数据的值提取到点数据中,是空间分析中的一个常见任务,这一过程可以应用于多种应用场景,如环境监测、资源管理和城市规划等。本文将从基础原理出发,讲解栅格数据和点数据的基本概念、栅格值提取的常用方法,以及在实际操作中可能遇到的问题和解决方案。关注公众号,回复20240604获取示例数据和代码。原创 2024-06-05 09:50:44 · 347 阅读 · 1 评论 -
长时序栅格数据缺失值插补
在时间序列分析中,「奇异谱分析」「SSA」)是一种非参数谱估计方法。它结合了经典时间序列分析、多元统计、多元几何、动力系统和信号处理的元素。“奇异谱分析”这个名称涉及协方差矩阵的奇异值分解中的特征值谱,而不是直接涉及频域分解。SSA 可以帮助分解时间序列分解为组件的总和,每个组件都有有意义的解释。如下图所示,奇异谱分析分解出来了趋势、变化和噪声三部分。SSA只考虑数据本身的特征,不考虑其他因素,特别适合于插补、平稳时间序列的预测。原创 2023-10-04 19:41:23 · 879 阅读 · 2 评论 -
一种特殊的NC文件转TIF——知道每个像元的坐标值怎么转为TIF
但是上次介绍的NC文件的地理参考是比较标准的,即数据都有经度和维度这两个维度来表示其在地理空间的位置,并且这两个维度都有与其对应的坐标变量。之前写过一篇文章,介绍了NetCDF文件格式,并详细讲解了如何使用Python对NetCDF文件进行读写操作,进而介绍了NetCDF文件的地理参考,最后以两个数据为例讲解了怎么将NetCDF格式的数据转GeoTIFF格式的数据。这是整体的每个点的分布,这种分布的情况下即使不考虑像元大小不一致的问题,我也没找到方法计算它的GeoTransform。原创 2023-08-24 19:05:57 · 374 阅读 · 0 评论 -
Python版GeoDetector更新
之前发布了一文,但当时实现的地理探测器功能仍不完善,比如在因子探测时缺乏p值。代码已经开源到了GitHub,网址是https://github.com/djw-easy/GeoDetector。下面介绍一下怎么用,基本与上一版相同。原创 2023-08-01 10:35:30 · 791 阅读 · 2 评论 -
一种栅格数据的空间聚类方法(ACA-Cluster)
聚类分析中常用的距离有近10 种,最常采用的距离之一曼哈顿距离。假设任意两个空间对象PiP_iPiPjP_jPj的中心坐标分别为xiyixiyi和xjyjxjyj;aika_{ik}aik和ajka_{jk}ajk分别是PiP_iPi和PjP_jPj上的值第k维度的属性值,则对象PiP_iPi和PjP_jPj之间的位置曼哈顿距离(DpD_pDp。原创 2023-06-17 16:33:10 · 1079 阅读 · 0 评论 -
基于Python的栅格数据地理加权回归
地理加权回归 (GWR) 是若干空间回归技术中的一种,越来越多地用于地理及其他学科。通过使回归方程适合数据集中的每个要素,GWR 可为您要尝试了解/预测的变量或过程提供局部模型。GWR 构建这些独立方程的方法是:将落在每个目标要素的带宽范围内的要素的因变量和解释变量进行合并。带宽的形状和大小取决于用户输入的核类型、带宽方法、距离以及相邻点的数目参数。MGWR 以地理加权回归 (GWR) 为基础构建。它是一种局部回归模型,允许解释变量的系数随空间变化。每个解释变量都可以在不同的空间尺度上运行。原创 2023-06-05 16:20:48 · 3515 阅读 · 4 评论 -
遥感影像深度学习样本对制作教程3——从GEE下载训练数据
上一篇文章介绍了遥感影像深度学习样本对制作的常用技巧,但实际使用中并不是所有数据都是那么的规整的,比如输入数据和标签可能存在空间范围不一致的情况。关注公众号,回复20230526获取示例数据和代码,这个系列的代码都放在一起,上手运行一下代码更容易弄懂。所以总的来说关键的步骤只有三点,提取重叠范围,根据重叠部分采用教程1的方法制作标签,以及重采样。下面分别介绍这三点,想具体了解可以自己下载代码和数据运行一下,这里只介绍关键步骤,具体的不多介绍。原创 2023-05-26 15:43:37 · 597 阅读 · 0 评论 -
遥感影像深度学习样本对制作教程3——从GEE下载训练数据
本文结合实例详细讲解了如何使用Python制作遥感影像深度学习样本对,关注公众号,回复20230427获取示例数据和代码。受到计算机内存限制,深度学习算法无法直接对大幅影像和标签图像进行训练,因此需要对影像和标签图像进行再处理,将制作好的城市绿地影像和对应标签图像裁剪成一系列相同尺寸的小图像放入模型训练。常用的裁剪方法有规则格网裁剪和滑动窗口裁剪。规则格网裁剪,也称棋盘裁剪,顾名思义就是将影像裁剪成棋盘形状固定尺寸的小图像,该方法得到的图像比较规则,但是缺点是获取的图像数量较少,如下图a所示;原创 2023-05-05 22:44:17 · 2786 阅读 · 3 评论 -
遥感影像深度学习样本对制作教程2——根据云含量筛选影像块
本文结合实例详细讲解了如何使用Python制作遥感影像深度学习样本对,关注公众号,回复20230427获取示例数据和代码。受到计算机内存限制,深度学习算法无法直接对大幅影像和标签图像进行训练,因此需要对影像和标签图像进行再处理,将制作好的城市绿地影像和对应标签图像裁剪成一系列相同尺寸的小图像放入模型训练。常用的裁剪方法有规则格网裁剪和滑动窗口裁剪。规则格网裁剪,也称棋盘裁剪,顾名思义就是将影像裁剪成棋盘形状固定尺寸的小图像,该方法得到的图像比较规则,但是缺点是获取的图像数量较少,如下图a所示;原创 2023-04-30 22:57:29 · 372 阅读 · 1 评论 -
遥感影像深度学习样本对制作教程1
本文结合实例详细讲解了如何使用Python制作遥感影像深度学习样本对,关注公众号,回复20230427获取示例数据和代码。受到计算机内存限制,深度学习算法无法直接对大幅影像和标签图像进行训练,因此需要对影像和标签图像进行再处理,将制作好的城市绿地影像和对应标签图像裁剪成一系列相同尺寸的小图像放入模型训练。常用的裁剪方法有规则格网裁剪和滑动窗口裁剪。规则格网裁剪,也称棋盘裁剪,顾名思义就是将影像裁剪成棋盘形状固定尺寸的小图像,该方法得到的图像比较规则,但是缺点是获取的图像数量较少,如下图a所示;原创 2023-04-27 23:26:39 · 471 阅读 · 1 评论 -
用Python实现ENVI中的“优化的线性拉伸”
为了使遥感影像具有更好的可视化效果,一般要对影像进行拉伸显示。线性拉伸在遥感图像处理中非常常见,对于整体偏暗的原始图像来讲,拉伸之后的图像视觉效果得到了显著增强。但对于图像中反射率比较高的地物,线性拉伸会使这些地物显得很亮,模糊其本身的颜色、纹理等信息。ENVI中的“优化的线性拉伸”能在一定程度上解决这个问题。如下图所示,左侧是2%线性拉伸后的结果,右侧是优化的线性拉伸的结果。线性拉伸的代码网上一大堆,但优化的线性拉伸中文互联网一个介绍的都没有。最后还是在ENVI的文档里看到了关于它的介绍,网址是。原创 2023-04-07 21:51:12 · 1293 阅读 · 0 评论 -
用Python实现地理探测器
地理探测器很多人都熟悉,快被用烂的一个空间数据分析方法了。现在有两个版本,一个是Excel版本,一个R版本的。之前在数据分析时,需要频繁的使用地理探测器计算q值,每次都得重新把数据输入到Excel里,很麻烦。而我又不会R语言,于是就用Python写了地理探测器软件。现在分享给大家,有同样需求的可以试一下。代码很简单,不到40行,已经开源到了GitHub,地址是。这个代码只实现了四个探测器中的三个,另外一个当时用不着,就没写,感兴趣的可以提交代码完善一下。下面介绍一下怎么用。原创 2023-04-04 18:53:31 · 1790 阅读 · 2 评论 -
基于Python的栅格数据分区统计
分区统计操作是一种用于计算由另一个数据集定义的区域内的栅格(值栅格)的像元值的统计操作。首先根据矢量数据将栅格化分区多个区域,提取每个区域的像元值并分别进行统计计算,而后输出结果(一般直接输出的输入矢量的某个字段里)。ArcGIS 有栅格的分区统计工具,但不够灵活,只能进行诸如最大值、最小值之类的统计计算。实现的栅格数据分区统计工具,能够更加灵活的实现分区统计功能,满足多样化的需求。,回复20230401获取示例数据和代码,包含这个工具的代码的写作思路。执行分区统计只需要调用类实例的。原创 2023-04-01 22:34:43 · 1541 阅读 · 0 评论 -
GDAL栅格数据处理教程
本文结合实例详细讲解了如何使用GDAL操作栅格数据,包括栅格数据的读写,以及一些常用的栅格数据处理操作,如坐标变换、裁剪、镶嵌、插值等。原创 2023-02-20 22:05:07 · 4571 阅读 · 3 评论 -
Anaconda中配置运行arcpy的python环境
本文介绍了如何在 Anaconda 或 Miniconda 下配置运行`arcpy`的 Python 环境,这样该环境既能使用`arcpy`,又能方便的安装第三方库而不用担心出现问题。原创 2023-01-23 19:41:57 · 2344 阅读 · 1 评论 -
NetCDF(nc)读写与格式转换介绍
本文介绍了NetCDF文件格式,并详细讲解了如何使用Python对NetCDF文件进行读写操作,进而介绍了NetCDF文件的地理参考,最后以两个数据为例讲解了怎么将NetCDF格式的数据转GeoTIFF格式的数据(.nc文件转为.tif文件)。原创 2023-01-19 12:34:38 · 6258 阅读 · 2 评论 -
基于Python的遥感云计算
本书文对一些常用的遥感云计算平台进行简要的介绍,并以公有云平台中发展最为成熟的Google Earth Engine为例演示演示Python在遥感大数据和云计算中的应用。原创 2023-01-06 12:25:11 · 1713 阅读 · 2 评论 -
基于Python的多时相数据合成
多时相数据合成就是依据一定的标准,选择某一时间范围内的多景相互匹配的数据中质量最好的象元值,作为该时间范围内合成结果的像元值。原创 2023-01-06 12:28:14 · 883 阅读 · 0 评论 -
一文搞懂Python的文件路径操作
如果你要在代码里读取一个文件,那么你首先要知道这个文件的路径。如果只有一个文件,那么很简单,直接复制这个文件所在的文件夹路径及其文件名即可。而在很多情况下,我们会处理大量的文件,这些文件一般都会按一定的规则存放在一个或几个文件夹里。本文便是简单讲一下怎么应对这种情况,将以Python为例,但其中的理念是通用的。原创 2023-01-06 12:27:07 · 11445 阅读 · 2 评论