代码随想录算法训练营第二十五天

题目:491. 非递减子序列

这道题目不能使用之前的used方法了 因为这道题目不能够排序 只能按照原有的数据排列方式进行查找子序列 因此只能使用unordered_set 来判断树层是否曾经使用过

这道题目也要在递归中收集结果因此  递归的第一句就是收集result只不过加个判断path的大小要大于1就可以了

单层逻辑中只要判断元素是否满足条件即可 首先path是不为空并且当前元素大于等于path.back(),然后就是uset中没有出现过这个元素就是 树层去重

需要注意的点,unordered_set<int> uset; 是记录本层元素是否重复使用,新的一层uset都会重新定义(清空),所以要知道uset只负责本层!

class Solution {
public:
    vector<int> path;
    vector<vector<int>> result;
    void backtracking(vector<int>& nums, int startIndex) {
        if (path.size() > 1)result.push_back(path);
        if (startIndex >= nums.size()) {
            return;
        }
        unordered_set<int> uset; // 使用set对本层元素进行去重
        for (int i = startIndex; i < nums.size(); i++) {
            if (path.size() != 0 && nums[i] < path.back()) continue;
            if (uset.find(nums[i]) != uset.end()) continue;// 使用set对本层元素进行去重
            path.push_back(nums[i]);
            uset.insert(nums[i]); // 记录这个元素在本层用过了,本层后面不能再用了
            backtracking(nums, i + 1);
            path.pop_back();
        }
    }
    vector<vector<int>> findSubsequences(vector<int>& nums) {
        backtracking(nums, 0);
        return result;
    }
};

题目:46. 全排列

首先排列是有序的,也就是说 [1,2] 和 [2,1] 是两个集合,这和之前分析的子集以及组合所不同的地方

可以看出元素1在[1,2]中已经使用过了,但是在[2,1]中还要在使用一次1,所以处理排列问题就不用使用startIndex了。

但排列问题需要一个used数组,标记已经选择的元素

因为排列问题,每次都要从头开始搜索,例如元素1在[1,2]中已经使用过了,但是在[2,1]中还要再使用一次1。

而used数组,其实就是记录此时path里都有哪些元素使用了,一个排列里一个元素只能使用一次

另外记录一下 startIndex相关的作用 startIndex 是为了防止出现重复的path 回溯过程中backtracking(nums, i 或者 i + 1)设置为i + 1是为了防止单个元素使用多次

代码如下:

class Solution {
public:
    vector<vector<int>> result;
    vector<int> path;
    void backtracking (vector<int>& nums, vector<bool>& used) {
        // 此时说明找到了一组
        if (path.size() == nums.size()) {
            result.push_back(path);
            return;
        }
        for (int i = 0; i < nums.size(); i++) {
            if (used[i] == true) continue; // path里已经收录的元素,直接跳过
            used[i] = true;
            path.push_back(nums[i]);
            backtracking(nums, used);
            path.pop_back();
            used[i] = false;
        }
    }
    vector<vector<int>> permute(vector<int>& nums) {
        result.clear();
        path.clear();
        vector<bool> used(nums.size(), false);
        backtracking(nums, used);
        return result;
    }
};

 题目:47. 全排列 II

这道题目和46.全排列 (opens new window)的区别在与给定一个可包含重复数字的序列,要返回所有不重复的全排列

这里又涉及到去重了。

40.组合总和II (opens new window)90.子集II (opens new window)我们分别详细讲解了组合问题和子集问题如何去重。

那么排列问题其实也是一样的套路。

还要强调的是去重一定要对元素进行排序,这样我们才方便通过相邻的节点来判断是否重复使用了

因此只要在全排列的题目的基础上加个 排序然后树层去重就可以解决了

完整代码如下:

class Solution {
public:
    vector<int> path;
    vector<vector<int>> result;
    void backtracking(vector<int>& nums, vector<bool>& used) {
        if (path.size() == nums.size()) {
            result.push_back(path);
            return;
        }

        for (int i = 0; i< nums.size(); i++) {
            if (used[i] == true || (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false)) continue;
            path.push_back(nums[i]);
            used[i] = true;
            backtracking(nums, used);
            used[i] = false;
            path.pop_back();
        }
    } 
    vector<vector<int>> permuteUnique(vector<int>& nums) {
        vector<bool> used(nums.size(), false);
        sort(nums.begin(), nums.end());
        backtracking(nums, used);
        return result;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值