本题首先要清楚两点:
- 只有一只股票!
- 当前只有买股票或者卖股票的操作
想获得利润至少要两天为一个交易单元。
局部最优:收集每天的正利润,全局最优:求得最大利润。
我贪的方法是后面一个如果大于前面的就求出他的差然后累加起来就行了
class Solution {
public:
int maxProfit(vector<int>& prices) {
int sum = 0;
for (int i = 1; i < prices.size(); i++) {
if (prices[i] > prices[i - 1]) {
sum += prices[i] - prices[i - 1];
}
}
return sum;
}
};
这道题目主要看0的问题 因为不能走到的问题只会是因为0限制了步数,我贪的办法(也就是局部极小值)是从后往前找有没有零的 如果有0就判断他前面的数的值是否大于他到这个零的距离如果大就没事反之则返回false;
自己的代码如下:
class Solution {
public:
bool canJump(vector<int>& nums) {
if (nums[0] == 0 && nums.size() > 1) return false;
for (int i = nums.size() - 2; i >= 0; i--) {
if (nums[i] == 0) {
int j = i - 1;
int count = 0;
while (j>=0 ) {
count++;
if (nums[j] > count) break;
j--;
if (j < 0) return false;
}
}
}
return true;
}
};
刚看到本题一开始可能想:当前位置元素如果是 3,我究竟是跳一步呢,还是两步呢,还是三步呢,究竟跳几步才是最优呢?
其实跳几步无所谓,关键在于可跳的覆盖范围!
不一定非要明确一次究竟跳几步,每次取最大的跳跃步数,这个就是可以跳跃的覆盖范围。
这个范围内,别管是怎么跳的,反正一定可以跳过来。
那么这个问题就转化为跳跃覆盖范围究竟可不可以覆盖到终点!
每次移动取最大跳跃步数(得到最大的覆盖范围),每移动一个单位,就更新最大覆盖范围。
贪心算法局部最优解:每次取最大跳跃步数(取最大覆盖范围),整体最优解:最后得到整体最大覆盖范围,看是否能到终点。能够覆盖终点就返回true否则false
class Solution {
public:
bool canJump(vector<int>& nums) {
int cover = 0;
if (nums.size() == 1) return true; // 只有一个元素,就是能达到
for (int i = 0; i <= cover; i++) { // 注意这里是小于等于cover
cover = max(i + nums[i], cover);
if (cover >= nums.size() - 1) return true; // 说明可以覆盖到终点了
}
return false;
}
};
这题哥们真贪不出来 得看视频才能贪出来
贪心的思路,局部最优:当前可移动距离尽可能多走,如果还没到终点,步数再加一。整体最优:一步尽可能多走,从而达到最少步数。
思路虽然是这样,但在写代码的时候还不能真的能跳多远就跳多远,那样就不知道下一步最远能跳到哪里了。
所以真正解题的时候,要从覆盖范围出发,不管怎么跳,覆盖范围内一定是可以跳到的,以最小的步数增加覆盖范围,覆盖范围一旦覆盖了终点,得到的就是最少步数!
这里需要统计两个覆盖范围,当前这一步的最大覆盖和下一步最大覆盖。
如果移动下标达到了当前这一步的最大覆盖最远距离了,还没有到终点的话,那么就必须再走一步来增加覆盖范围,直到覆盖范围覆盖了终点。
从图中可以看出来,就是移动下标达到了当前覆盖的最远距离下标时,步数就要加一,来增加覆盖距离。最后的步数就是最少步数。
这里还是有个特殊情况需要考虑,当移动下标达到了当前覆盖的最远距离下标时
- 如果当前覆盖最远距离下标不是是集合终点,步数就加一,还需要继续走。
- 如果当前覆盖最远距离下标就是是集合终点,步数不用加一,因为不能再往后走了。
C++代码如下:(详细注释)
class Solution {
public:
int jump(vector<int>& nums) {
if (nums.size() == 1) return 0;
int curDistance = 0; // 当前覆盖最远距离下标
int ans = 0; // 记录走的最大步数
int nextDistance = 0; // 下一步覆盖最远距离下标
for (int i = 0; i < nums.size(); i++) {
nextDistance = max(nums[i] + i, nextDistance); // 更新下一步覆盖最远距离下标
if (i == curDistance) { // 遇到当前覆盖最远距离下标
ans++; // 需要走下一步
curDistance = nextDistance; // 更新当前覆盖最远距离下标(相当于加油了)
if (nextDistance >= nums.size() - 1) break; // 当前覆盖最远距到达集合终点,不用做ans++操作了,直接结束
}
}
return ans;
}
};
这道题贪的方法就是 每次选取最小的值进行取反即可秒杀
class Solution {
public:
int largestSumAfterKNegations(vector<int>& nums, int k) {
int sum = 0;
sort(nums.begin(), nums.end());
while(k--) {
nums[0] = -nums[0];
sort(nums.begin(), nums.end());
}
for (int i : nums) {
sum += i;
}
return sum;
}
};