憨批的语义分割重制版9——Pytorch 搭建自己的DeeplabV3+语义分割平台

注意事项

这是重新构建了的DeeplabV3+语义分割网络,主要是文件框架上的构建,还有代码的实现,和之前的语义分割网络相比,更加完整也更清晰一些。建议还是学习这个版本的DeeplabV3+。

学习前言

这是Pytorch版本的!
在这里插入图片描述

什么是DeeplabV3+模型

DeeplabV3+被认为是语义分割的新高峰,因为这个模型的效果非常好。
DeeplabV3+主要在模型的架构上作文章,引入了可任意控制编码器提取特征的分辨率,通过空洞卷积平衡精度和耗时。
在这里插入图片描述
DeeplabV3+在Encoder部分引入了大量的空洞卷积,在不损失信息的情况下,加大了感受野,让每个卷积输出都包含较大范围的信息。如下就是空洞卷积的一个示意图,所谓空洞就是特征点提取的时候会跨像素在这里插入图片描述

代码下载

Github源码下载地址为:
https://github.com/bubbliiiing/deeplabv3-plus-pytorch

复制该路径到地址栏跳转。

DeeplabV3+实现思路

一、预测部分

1、主干网络介绍

在这里插入图片描述
DeeplabV3+在论文中采用的是Xception系列作为主干特征提取网络,本博客会给大家提供两个主干网络,分别是Xception和mobilenetv2。

但是由于算力限制(我没有什么卡),为了方便博客的进行,本文以mobilenetv2为例,给大家进行解析。

MobileNet模型是Google针对手机等嵌入式设备提出的一种轻量级的深层神经网络。

MobileNetV2是MobileNet的升级版,它具有一个非常重要的特点就是使用了Inverted resblock,整个mobilenetv2都由Inverted resblock组成。

Inverted resblock可以分为两个部分:
左边是主干部分,首先利用1x1卷积进行升维,然后利用3x3深度可分离卷积进行特征提取,然后再利用1x1卷积降维
右边是残差边部分,输入和输出直接相接
在这里插入图片描述

需要注意的是,在DeeplabV3当中,一般不会5次下采样,可选的有3次下采样和4次下采样,本文使用的4次下采样这里所提到的下采样指的是不会进行五次长和宽的压缩,通常选用三次或者四次长和宽的压缩。
在这里插入图片描述
在完成MobilenetV2的特征提取后,我们可以获得两个有效特征层,一个有效特征层是输入图片高和宽压缩两次的结果,一个有效特征层是输入图片高和宽压缩四次的结果。

import math
import os

import torch
import torch.nn as nn
import torch.utils.model_zoo as model_zoo

BatchNorm2d = nn.BatchNorm2d

def conv_bn(inp, oup, stride):
    return nn.Sequential(
        nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
        BatchNorm2d(oup),
        nn.ReLU6(inplace=True)
    )

def conv_1x1_bn(inp, oup):
    return nn.Sequential(
        nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
        BatchNorm2d(oup),
        nn.ReLU6(inplace=True)
    )

class InvertedResidual(nn.Module):
    def __init__(self, inp, oup, stride, expand_ratio):
        super(InvertedResidual, self).__init__()
        self.stride = stride
        assert stride in [1, 2]

        hidden_dim = round(inp * expand_ratio)
        self.use_res_connect = self.stride == 1 and inp == oup

        if expand_ratio == 1:
            self.conv = nn.Sequential(
                # dw
                nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False),
                BatchNorm2d(hidden_dim),
                nn.ReLU6(inplace=True),
                # pw-linear
                nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
                BatchNorm2d(oup),
            )
        else:
            self.conv = nn.Sequential(
                # pw
                nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False),
                BatchNorm2d(hidden_dim),
                nn.ReLU6(inplace=True),
                # dw
                nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False),
                BatchNorm2d(hidden_dim),
                nn.ReLU6(inplace=True),
                # pw-linear
                nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
                BatchNorm2d(oup),
            )

    def forward(self, x):
        if self.use_res_connect:
            return x + self.conv(x)
        else:
            return self.conv(x)

class MobileNetV2(nn.Module):
    def __init__(self, n_class=1000, input_size=224, width_mult=1.):
        super(MobileNetV2, self).__init__()
        block = InvertedResidual
        input_channel = 32
        last_channel = 1280
        interverted_residual_setting = [
            # t, c, n, s
            [1, 16, 1, 1],
            [6, 24, 2, 2],
            [6, 32, 3, 2],
            [6, 64, 4, 2],
            [6, 96, 3, 1],
            [6, 160, 3, 2],
            [6, 320, 1, 1],
        ]

        # building first layer
        assert input_size % 32 == 0
        input_channel = int(input_channel * width_mult)
        self.last_channel = int(last_channel * width_mult) if width_mult > 1.0 else last_channel
        self.features = [conv_bn(3, input_channel, 2)]
        # building inverted residual blocks
        for t, c, n, s in interverted_residual_setting:
            output_channel = int(c * width_mult)
            for i in range(n):
                if i == 0:
                    self.features.append(block(input_channel, output_channel, s, expand_ratio=t))
                else:
                    self.features.append(block(input_channel, output_channel, 1, expand_ratio=t))
                input_channel = output_channel
        # building last several layers
        self.features.append(conv_1x1_bn(input_channel, self.last_channel))
        # make it nn.Sequential
        self.features = nn.Sequential(*self.features)

        # building classifier
        self.classifier = nn.Sequential(
            nn.Dropout(0.2),
            nn.Linear(self.last_channel, n_class),
        )

        self._initialize_weights()

    def forward(self, x):
        x = self.features(x)
        x = x.mean(3).mean(2)
        x = self.classifier(x)
        return x

    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
                if m.bias is not None:
                    m.bias.data.zero_()
            elif isinstance(m, BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()
            elif isinstance(m, nn.Linear):
                n = m.weight.size(1)
                m.weight.data.normal_(0, 0.01)
                m.bias.data.zero_()


def load_url(url, model_dir='./model_data', map_location=None):
    if not os.path.exists(model_dir):
        os.makedirs(model_dir)
    filename = url.split('/')[-1]
    cached_file = os.path.join(model_dir, filename)
    if os.path.exists(cached_file):
        return torch.load(cached_file, map_location=map_location)
    else:
        return model_zoo.load_url(url,model_dir=model_dir)

def mobilenetv2(pretrained=False, **kwargs):
    model = MobileNetV2(n_class=1000, **kwargs)
    if pretrained:
        model.load_state_dict(load_url('http://sceneparsing.csail.mit.edu/model/pretrained_resnet/mobilenet_v2.pth.tar'), strict=False)
    return model

2、加强特征提取结构

在这里插入图片描述
在DeeplabV3+中,加强特征提取网络可以分为两部分:
在Encoder中,我们会对压缩四次的初步有效特征层利用并行的Atrous Convolution,分别用不同rate的Atrous Convolution进行特征提取,再进行合并,再进行1x1卷积压缩特征。在这里插入图片描述
在Decoder中,我们会对压缩两次的初步有效特征层利用1x1卷积调整通道数,再和空洞卷积后的有效特征层上采样的结果进行堆叠,在完成堆叠后,进行两次深度可分离卷积块。
在这里插入图片描述
这个时候,我们就获得了一个最终的有效特征层,它是整张图片的特征浓缩。

import torch
import torch.nn as nn
import torch.nn.functional as F
from nets.xception import xception
from nets.mobilenetv2 import mobilenetv2

class MobileNetV2(nn.Module):
    def __init__(self, downsample_factor=8, pretrained=True):
        super(MobileNetV2, self).__init__()
        from functools import partial
        
        model = mobilenetv2(pretrained)
        self.features = model.features[:-1]

        self.total_idx = len(self.features)
        self.down_idx = [2, 4, 7, 14]

        if downsample_factor == 8:
            for i in range(self.down_idx[-2], self.down_idx[-1]):
                self.features[i].apply(
                    partial(self._nostride_dilate, dilate=2)
                )
            for i in range(self.down_idx[-1], self.total_idx):
                self.features[i].apply(
                    partial(self._nostride_dilate, dilate=4)
                )
        elif downsample_factor == 16:
            for i in range(self.down_idx[-1], self.total_idx):
                self.features[i].apply(
                    partial(self._nostride_dilate, dilate=2)
                )
        
    def _nostride_dilate(self, m, dilate):
        classname = m.__class__.__name__
        if classname.find('Conv') != -1:
            if m.stride == (2, 2):
                m.stride = (1, 1)
                if m.kernel_size == (3, 3):
                    m.dilation = (dilate//2, dilate//2)
                    m.padding = (dilate//2, dilate//2)
            else:
                if m.kernel_size == (3, 3):
                    m.dilation = (dilate, dilate)
                    m.padding = (dilate, dilate)

    def forward(self, x):
        low_level_features = self.features[:4](x)
        x = self.features[4:](low_level_features)
        return low_level_features, x 


#-----------------------------------------#
#   ASPP特征提取模块
#   利用不同膨胀率的膨胀卷积进行特征提取
#-----------------------------------------#
class ASPP(nn.Module):
	def __init__(self, dim_in, dim_out, rate=1, bn_mom=0.1):
		super(ASPP, self).__init__()
		self.branch1 = nn.Sequential(
				nn.Conv2d(dim_in, dim_out, 1, 1, padding=0, dilation=rate,bias=True),
				nn.BatchNorm2d(dim_out, momentum=bn_mom),
				nn.ReLU(inplace=True),
		)
		self.branch2 = nn.Sequential(
				nn.Conv2d(dim_in, dim_out, 3, 1, padding=6*rate, dilation=6*rate, bias=True),
				nn.BatchNorm2d(dim_out, momentum=bn_mom),
				nn.ReLU(inplace=True),	
		)
		self.branch3 = nn.Sequential(
				nn.Conv2d(dim_in, dim_out, 3, 1, padding=12*rate, dilation=12*rate, bias=True),
				nn.BatchNorm2d(dim_out, momentum=bn_mom),
				nn.ReLU(inplace=True),	
		)
		self.branch4 = nn.Sequential(
				nn.Conv2d(dim_in, dim_out, 3, 1, padding=18*rate, dilation=18*rate, bias=True),
				nn.BatchNorm2d(dim_out, momentum=bn_mom),
				nn.ReLU(inplace=True),	
		)
		self.branch5_conv = nn.Conv2d(dim_in, dim_out, 1, 1, 0,bias=True)
		self.branch5_bn = nn.BatchNorm2d(dim_out, momentum=bn_mom)
		self.branch5_relu = nn.ReLU(inplace=True)

		self.conv_cat = nn.Sequential(
				nn.Conv2d(dim_out*5, dim_out, 1, 1, padding=0,bias=True),
				nn.BatchNorm2d(dim_out, momentum=bn_mom),
				nn.ReLU(inplace=True),		
		)

	def forward(self, x):
		[b, c, row, col] = x.size()
        #-----------------------------------------#
        #   一共五个分支
        #-----------------------------------------#
		conv1x1 = self.branch1(x)
		conv3x3_1 = self.branch2(x)
		conv3x3_2 = self.branch3(x)
		conv3x3_3 = self.branch4(x)
        #-----------------------------------------#
        #   第五个分支,全局平均池化+卷积
        #-----------------------------------------#
		global_feature = torch.mean(x,2,True)
		global_feature = torch.mean(global_feature,3,True)
		global_feature = self.branch5_conv(global_feature)
		global_feature = self.branch5_bn(global_feature)
		global_feature = self.branch5_relu(global_feature)
		global_feature = F.interpolate(global_feature, (row, col), None, 'bilinear', True)
		
        #-----------------------------------------#
        #   将五个分支的内容堆叠起来
        #   然后1x1卷积整合特征。
        #-----------------------------------------#
		feature_cat = torch.cat([conv1x1, conv3x3_1, conv3x3_2, conv3x3_3, global_feature], dim=1)
		result = self.conv_cat(feature_cat)
		return result

class DeepLab(nn.Module):
    def __init__(self, num_classes, backbone="mobilenet", pretrained=True, downsample_factor=16):
        super(DeepLab, self).__init__()
        if backbone=="xception":
            #----------------------------------#
            #   获得两个特征层
            #   浅层特征    [128,128,256]
            #   主干部分    [30,30,2048]
            #----------------------------------#
            self.backbone = xception(downsample_factor=downsample_factor, pretrained=pretrained)
            in_channels = 2048
            low_level_channels = 256
        elif backbone=="mobilenet":
            #----------------------------------#
            #   获得两个特征层
            #   浅层特征    [128,128,24]
            #   主干部分    [30,30,320]
            #----------------------------------#
            self.backbone = MobileNetV2(downsample_factor=downsample_factor, pretrained=pretrained)
            in_channels = 320
            low_level_channels = 24
        else:
            raise ValueError('Unsupported backbone - `{}`, Use mobilenet, xception.'.format(backbone))

        #-----------------------------------------#
        #   ASPP特征提取模块
        #   利用不同膨胀率的膨胀卷积进行特征提取
        #-----------------------------------------#
        self.aspp = ASPP(dim_in=in_channels, dim_out=256, rate=16//downsample_factor)
        
        #----------------------------------#
        #   浅层特征边
        #----------------------------------#
        self.shortcut_conv = nn.Sequential(
            nn.Conv2d(low_level_channels, 48, 1),
            nn.BatchNorm2d(48),
            nn.ReLU(inplace=True)
        )		

        self.cat_conv = nn.Sequential(
            nn.Conv2d(48+256, 256, 3, stride=1, padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True),
            nn.Dropout(0.5),

            nn.Conv2d(256, 256, 3, stride=1, padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True),

            nn.Dropout(0.1),
        )
        self.cls_conv = nn.Conv2d(256, num_classes, 1, stride=1)

    def forward(self, x):
        H, W = x.size(2), x.size(3)
        #-----------------------------------------#
        #   获得两个特征层
        #   浅层特征-进行卷积处理
        #   主干部分-利用ASPP结构进行加强特征提取
        #-----------------------------------------#
        low_level_features, x = self.backbone(x)
        x = self.aspp(x)
        low_level_features = self.shortcut_conv(low_level_features)
        
        #-----------------------------------------#
        #   将加强特征边上采样
        #   与浅层特征堆叠后利用卷积进行特征提取
        #-----------------------------------------#
        x = F.interpolate(x, size=(low_level_features.size(2), low_level_features.size(3)), mode='bilinear', align_corners=True)
        x = self.cat_conv(torch.cat((x, low_level_features), dim=1))
        x = self.cls_conv(x)
        x = F.interpolate(x, size=(H, W), mode='bilinear', align_corners=True)
        return x

3、利用特征获得预测结果

利用1、2步,我们可以获取输入进来的图片的特征,此时,我们需要利用特征获得预测结果。

利用特征获得预测结果的过程可以分为2步:
1、利用一个1x1卷积进行通道调整,调整成Num_Classes。
2、利用resize进行上采样使得最终输出层,宽高和输入图片一样。

在这里插入图片描述

class DeepLab(nn.Module):
    def __init__(self, num_classes, backbone="mobilenet", pretrained=True, downsample_factor=16):
        super(DeepLab, self).__init__()
        if backbone=="xception":
            #----------------------------------#
            #   获得两个特征层
            #   浅层特征    [128,128,256]
            #   主干部分    [30,30,2048]
            #----------------------------------#
            self.backbone = xception(downsample_factor=downsample_factor, pretrained=pretrained)
            in_channels = 2048
            low_level_channels = 256
        elif backbone=="mobilenet":
            #----------------------------------#
            #   获得两个特征层
            #   浅层特征    [128,128,24]
            #   主干部分    [30,30,320]
            #----------------------------------#
            self.backbone = MobileNetV2(downsample_factor=downsample_factor, pretrained=pretrained)
            in_channels = 320
            low_level_channels = 24
        else:
            raise ValueError('Unsupported backbone - `{}`, Use mobilenet, xception.'.format(backbone))

        #-----------------------------------------#
        #   ASPP特征提取模块
        #   利用不同膨胀率的膨胀卷积进行特征提取
        #-----------------------------------------#
        self.aspp = ASPP(dim_in=in_channels, dim_out=256, rate=16//downsample_factor)
        
        #----------------------------------#
        #   浅层特征边
        #----------------------------------#
        self.shortcut_conv = nn.Sequential(
            nn.Conv2d(low_level_channels, 48, 1),
            nn.BatchNorm2d(48),
            nn.ReLU(inplace=True)
        )		

        self.cat_conv = nn.Sequential(
            nn.Conv2d(48+256, 256, 3, stride=1, padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True),
            nn.Dropout(0.5),

            nn.Conv2d(256, 256, 3, stride=1, padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True),

            nn.Dropout(0.1),
        )
        self.cls_conv = nn.Conv2d(256, num_classes, 1, stride=1)

    def forward(self, x):
        H, W = x.size(2), x.size(3)
        #-----------------------------------------#
        #   获得两个特征层
        #   浅层特征-进行卷积处理
        #   主干部分-利用ASPP结构进行加强特征提取
        #-----------------------------------------#
        low_level_features, x = self.backbone(x)
        x = self.aspp(x)
        low_level_features = self.shortcut_conv(low_level_features)
        
        #-----------------------------------------#
        #   将加强特征边上采样
        #   与浅层特征堆叠后利用卷积进行特征提取
        #-----------------------------------------#
        x = F.interpolate(x, size=(low_level_features.size(2), low_level_features.size(3)), mode='bilinear', align_corners=True)
        x = self.cat_conv(torch.cat((x, low_level_features), dim=1))
        x = self.cls_conv(x)
        x = F.interpolate(x, size=(H, W), mode='bilinear', align_corners=True)
        return x

二、训练部分

1、训练文件详解

我们使用的训练文件采用VOC的格式。
语义分割模型训练的文件分为两部分。
第一部分是原图,像这样:
在这里插入图片描述
第二部分标签,像这样:
在这里插入图片描述
原图就是普通的RGB图像,标签就是灰度图或者8位彩色图。

原图的shape为[height, width, 3],标签的shape就是[height, width],对于标签而言,每个像素点的内容是一个数字,比如0、1、2、3、4、5……,代表这个像素点所属的类别。

语义分割的工作就是对原始的图片的每一个像素点进行分类,所以通过预测结果中每个像素点属于每个类别的概率与标签对比,可以对网络进行训练。

2、LOSS解析

本文所使用的LOSS由两部分组成:
1、Cross Entropy Loss。
2、Dice Loss。

Cross Entropy Loss就是普通的交叉熵损失,当语义分割平台利用Softmax对像素点进行分类的时候,进行使用。

Dice loss将语义分割的评价指标作为Loss,Dice系数是一种集合相似度度量函数,通常用于计算两个样本的相似度,取值范围在[0,1]。

计算公式如下:
在这里插入图片描述
就是预测结果和真实结果的交乘上2,除上预测结果加上真实结果。其值在0-1之间。越大表示预测结果和真实结果重合度越大。所以Dice系数是越大越好。

如果作为LOSS的话是越小越好,所以使得Dice loss = 1 - Dice,就可以将Loss作为语义分割的损失了。
实现代码如下:

import torch
import torch.nn.functional as F  
import numpy as np
from torch import nn
from torch.autograd import Variable
from random import shuffle
from matplotlib.colors import rgb_to_hsv, hsv_to_rgb
from PIL import Image
import cv2

def CE_Loss(inputs, target, num_classes=21):
    n, c, h, w = inputs.size()
    nt, ht, wt = target.size()
    if h != ht and w != wt:
        inputs = F.interpolate(inputs, size=(ht, wt), mode="bilinear", align_corners=True)

    temp_inputs = inputs.transpose(1, 2).transpose(2, 3).contiguous().view(-1, c)
    temp_target = target.view(-1)

    CE_loss  = nn.NLLLoss(ignore_index=num_classes)(F.log_softmax(temp_inputs, dim = -1), temp_target)
    return CE_loss

def Dice_loss(inputs, target, beta=1, smooth = 1e-5):
    n, c, h, w = inputs.size()
    nt, ht, wt, ct = target.size()
    
    if h != ht and w != wt:
        inputs = F.interpolate(inputs, size=(ht, wt), mode="bilinear", align_corners=True)
    temp_inputs = torch.softmax(inputs.transpose(1, 2).transpose(2, 3).contiguous().view(n, -1, c),-1)
    temp_target = target.view(n, -1, ct)

    #--------------------------------------------#
    #   计算dice loss
    #--------------------------------------------#
    tp = torch.sum(temp_target[...,:-1] * temp_inputs, axis=[0,1])
    fp = torch.sum(temp_inputs                       , axis=[0,1]) - tp
    fn = torch.sum(temp_target[...,:-1]              , axis=[0,1]) - tp

    score = ((1 + beta ** 2) * tp + smooth) / ((1 + beta ** 2) * tp + beta ** 2 * fn + fp + smooth)
    dice_loss = 1 - torch.mean(score)
    return dice_loss

训练自己的DeeplabV3+模型

首先前往Github下载对应的仓库,下载完后利用解压软件解压,之后用编程软件打开文件夹。
注意打开的根目录必须正确,否则相对目录不正确的情况下,代码将无法运行。

一定要注意打开后的根目录是文件存放的目录。
在这里插入图片描述

一、数据集的准备

本文使用VOC格式进行训练,训练前需要自己制作好数据集,如果没有自己的数据集,可以通过Github连接下载VOC12+07的数据集尝试下。
训练前将图片文件放在VOCdevkit文件夹下的VOC2007文件夹下的JPEGImages中。
训练前将标签文件放在VOCdevkit文件夹下的VOC2007文件夹下的SegmentationClass中。

在这里插入图片描述

二、数据集的处理

在完成数据集的摆放之后,我们需要对数据集进行下一步的处理,目的是获得训练用的train.txt以及val.txt,需要用到根目录下的voc_annotation.py。

如果下载的是我上传的voc数据集,那么就不需要运行根目录下的voc_annotation.py。
如果是自己制作的数据集,那么需要运行根目录下的voc_annotation.py,从而生成train.txt和val.txt。
在这里插入图片描述

三、开始网络训练

通过voc_annotation.py我们已经生成了train.txt以及val.txt,此时我们可以开始训练了。训练的参数较多,大家可以在下载库后仔细看注释,其中最重要的部分依然是train.py里的num_classes。

num_classes用于指向检测类别的个数+1!训练自己的数据集必须要修改!

除此之外在train.py文件夹下面,选择自己要使用的主干模型backbone、预训练权重model_path和下采样因子downsample_factor。预训练模型需要和主干模型相对应。下采样因子可以在8和16中选择。
在这里插入图片描述
之后就可以开始训练了。
在这里插入图片描述

四、训练结果预测

训练结果预测需要用到两个文件,分别是deeplab.py和predict.py。
我们首先需要去deeplab.py里面修改model_path以及num_classes,这两个参数必须要修改。

model_path指向训练好的权值文件,在logs文件夹里。
num_classes指向检测类别的个数+1。

在这里插入图片描述
完成修改后就可以运行predict.py进行检测了。运行后输入图片路径即可检测。

  • 267
    点赞
  • 1101
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 590
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 590
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Bubbliiiing

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值