pytorch构建deeplabv3+

DeepLab v3+ 是DeepLab语义分割系列网络的最新作,其前作有 DeepLab v1,v2, v3, 在最新作中,Liang-Chieh Chen等人通过encoder-decoder进行多尺度信息的融合,同时保留了原来的空洞卷积和ASSP层, 其骨干网络使用了Xception模型,提高了语义分割的健壮性和运行速率。其在Pascal VOC上达到了 89.0% 的mIoU,在Cityscape上也取得了 82.1%的好成绩,下图展示了DeepLab v3+的基本结构:

请添加图片描述
其实在DCNN中主要是做一个特征提取,至于采用哪个网络做backbone具体问题具体对待,在这里我才用的是mobilenetv2(只是将deepwise_conv中添加了dilation, 添加空洞卷积是为了增大感受野)

网络结构分为Encode部分和decoder部分
先看encoder部分:
请添加图片描述
接在DCNN后面的实际上就是一个ASPP结构(采用不同的采样率来对特征图做空洞卷积),然后再将对应的结果进行拼接,需要注意的是传入ASPP结构的是DCNN得到的高层特征图image Pooling部分其实会改变特征图的尺寸,所以可以通过使用双线插值(为什么采用双线插值,因为简单)或者其他方式保证经过ASPP结构的各个特征图尺寸相同,最后再进行拼接
请添加图片描述

再看decoder部分请添加图片描述
decoder部分首先会对传入的低层特征图进行通道调整,然后与encoder传入的特征图进行拼接,注意encoder传入的特征图需要经过上采样处理(维持与低层特征图相同的尺寸),最后输出部分只需要将尺寸还原到输入图片的尺寸就行了

import torch
import torch.nn as nn
import torch.functional as F

class ASPP(nn.Module):
    def __init__(self, feature, atrous):
        super(ASPP, self).__init__()
        self.feature = feature
        self.Conv1 = _Deepwise_Conv(in_channels=feature.size()[1], out_channels=256, use_bias=False)
        self.Conv_rate1 = _Deepwise_Conv(in_channels=feature.size()[1], out_channels=256, rate=atrous[0],
                                         padding=atrous[0], use_bias=False)
        self.Conv_rate2 = _Deepwise_Conv(in_channels=feature.size()[1], out_channels=256, rate=atrous[1],
                                         padding=atrous[1], use_bias=False)
        self.Conv_rate3 = _Deepwise_Conv(in_channels=feature.size()[1], out_channels=256, rate=atrous[2],
                                         padding=atrous[2], use_bias=False)

        self.globalAvgPoolAndConv = nn.Sequential(
                                    nn.AdaptiveAvgPool2d((1, 1)),
                                    Conv(in_channels=320, out_channels=256, kernel_size=1, stride=1, use_bias=False),
                                    )

        self.Conv4 = Conv(in_channels=256 * 5, out_channels=256, kernel_size=1, stride=1, use_bias=False)
        self.dropout = nn.Dropout(p=0.1)

    def forward(self):
        f1 = self.Conv1(self.feature.clone())
        f2 = self.Conv_rate1(self.feature.clone())
        f3 = self.Conv_rate2(self.feature.clone())
        f4 = self.Conv_rate3(self.feature.clone())
        f5 = self.globalAvgPoolAndConv(self.feature.clone())
        f5 = F.interpolate(f5, size=(self.feature.size(2), self.feature.size(3)), mode='bilinear')
        x = torch.cat([f1, f2, f3, f4, f5], dim=1)
        x = self.Conv4(x)
        x = self.dropout(x)


class Deeplabv3(nn.Module):
    def __init__(self, feature, atrous, skip1, num_class):
        super(Deeplabv3, self).__init__()
        self.num_class = num_class
        self.feature = ASPP(atrous=atrous, feature=feature).forward()
        self.skip1 = skip1
        self.encoder = ASPP(atrous=atrous, feature=feature)

        self.Conv1 = Conv(in_channels=skip1.size()[1], out_channels=48, kernel_size=1,strip=1, use_bias=False)

        self.Conv2 = _Deepwise_Conv(in_channels=48 + 256, out_channels=256, use_bias=False)
        self.ConvNUM = Conv(in_channels=256, out_channels=num_class, kernel_size=1, use_bias=False)

    def forward(self, input_img):
        skip1 = self.Conv1(self.skip1)
        feature = F.interpolate(self.feature, size=(skip1.size()[2], skip1.size()[3]), mode='bilinear')
        skip1 = torch.cat([skip1, feature], dim=1)
        skip1 = self.Conv2(skip1)
        skip1 = self.ConvNUM(skip1)
        skip1 = F.interpolate(skip1, size=(input_img.size()[2], input_img.size()[3]))
        return F.softmax(skip1,dim=1)




class _bottlenet(nn.Module):
    def __init__(self, in_channels, out_channels, rate=1, expand_ratio=1, stride=1):
        super(_bottlenet, self).__init__()
        # 步长为2以及前后通道数不同就不进行残差堆叠
        self.use_res_connect = (stride == 1) and (in_channels == out_channels)
        self.features = nn.Sequential(
            nn.Conv2d(in_channels=in_channels, out_channels=in_channels * expand_ratio, kernel_size=1),
            nn.BatchNorm2d(num_features=in_channels * expand_ratio),
            nn.ReLU6(inplace=True),

            nn.Conv2d(in_channels=in_channels * expand_ratio, out_channels=in_channels * expand_ratio, kernel_size=3, stride=stride,
                      padding=rate, dilation=(rate, rate)),
            nn.BatchNorm2d(num_features=in_channels * expand_ratio),
            nn.ReLU6(inplace=True),

            nn.Conv2d(in_channels=in_channels * expand_ratio, out_channels=out_channels, stride=1, kernel_size=1,
                      padding=0),
            nn.BatchNorm2d(num_features=out_channels),
            nn.ReLU6(inplace=True),
        )
        # self.change = nn.Conv2d()

    def forward(self, x):
        x_clone = x.clone()
        x = self.features(x)
        #         print(x.size())
        if self.use_res_connect:
            #             print("="*10)
            #             print(x.size())
            #             print(x_clone.size())
            x.add_(x_clone)
        return x


class get_mobilenetv2_encoder(nn.Module):
    def __init__(self, downsamp_factor=8, num_classes=3):
        super(get_mobilenetv2_encoder, self).__init__()
        if downsamp_factor == 8:
            self.atrous_rates = (12, 24, 36)
            block4_dilation = 2
            block5_dilation = 4
            block4_stride = 1
        else:
            self.atrous_rates = (6, 12, 18)
            block4_dilation = 1
            block5_dilation = 2
            block4_stride = 2

        self.features = []
        self.features.append(
            nn.Conv2d(in_channels=3, out_channels=32, kernel_size=(3, 3), padding=1, stride=2)
        )
        self.features.append(
            nn.BatchNorm2d(num_features=32)
        )
        self.features.append(
            nn.ReLU6(inplace=True)
        )

        # ------  3 ------
        # block1
        self.features.append(
            _bottlenet(in_channels=32, out_channels=16, expand_ratio=1, stride=1)
        )

        # block2
        # [t, c, n, s] = [6, 24, 2, 2]
        self.features.append(
            _bottlenet(in_channels=16, out_channels=24, expand_ratio=6, stride=2)
        )
        self.features.append(
            _bottlenet(in_channels=24, out_channels=24, expand_ratio=6, stride=1)
        )

        # ------  6  -----
        # block3
        # [t, c, n, s] = [6, 32, 3, 2]
        self.features.append(
            _bottlenet(in_channels=24, out_channels=32, expand_ratio=6, stride=2)
        )
        for i in range(2):
            self.features.append(
                _bottlenet(in_channels=32, out_channels=32, expand_ratio=6)
            )

            # ------  9  ------

        # block4
        # [t, c, n, s] = [6, 64, 4, 2]
        self.features.append(
            _bottlenet(in_channels=32, out_channels=64, expand_ratio=6, stride=block4_stride)
        )
        for i in range(3):
            self.features.append(
                _bottlenet(in_channels=64, out_channels=64, expand_ratio=6, rate=block4_dilation)
            )

            # ------  13  ------

        # block5
        # [t, c, n, s] = [6, 96, 3, 1]
        self.features.append(
            _bottlenet(in_channels=64, out_channels=96, expand_ratio=6, rate=block4_dilation)
        )
        for i in range(2):
            self.features.append(
                _bottlenet(in_channels=96, out_channels=96, expand_ratio=6, rate=block4_dilation)
            )

        # [t, c, n, s] = [6, 160, 3, 2]
        # block6
        self.features.append(
            _bottlenet(in_channels=96, out_channels=160, expand_ratio=6, stride=1)
        )
        for i in range(2):
            self.features.append(
                _bottlenet(in_channels=160, out_channels=160, expand_ratio=6)
            )

            # [t, c, n, s] = [6, 160, 3, 2]
        self.features.append(
            _bottlenet(in_channels=160, out_channels=320, expand_ratio=6)
        )


        self.features = nn.Sequential(*self.features)

    def forward(self, x):
        skip1 = None
        for i, op in enumerate(self.features, 0):
            x = op(x)
            if i == 5:
                skip1 = x.clone()
        return x, self.atrous_rates, skip1


class pool_block(nn.Module):
    def __init__(self, f, stride):
        super(pool_block, self).__init__()
        in_channels = f.size()[1]
        kernel_size = stride
        self.features = nn.Sequential(

            nn.AvgPool2d(kernel_size=kernel_size, stride=kernel_size, padding=kernel_size // 2),

            nn.Conv2d(in_channels=in_channels, out_channels=512, kernel_size=1, stride=1, bias=False),

            nn.BatchNorm2d(num_features=512),

            nn.ReLU6(inplace=True),

            nn.Upsample(size=(INPUT_SIZE, INPUT_SIZE), mode="bilinear")
        )

    def forward(self, x):
        x = self.features(x)
        return x


class _Deepwise_Conv(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1, rate=1, use_bias=False):
        super(_Deepwise_Conv, self).__init__()
        self.conv1 = Conv(in_channels=in_channels, out_channels=in_channels, kernel_size=kernel_size,
                          stride=stride, padding=padding, dilation=rate, use_bias=use_bias)
        self.conv2 = Conv(in_channels=in_channels, out_channels=out_channels, kernel_size=1,
                          stride=1, padding=0, use_bias=use_bias)

    def forward(self, x):
        return self.conv2(self.conv1(x))


class Conv(nn.Module):
    '''
     nn.Conv2d + Batchnormlizetion + ReLU6

    '''
    def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1, dilation=1, use_bias=False):
        super(Conv, self).__init__()
        self.features = nn.Sequential(
            nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
                                  stride=stride, padding=padding, dilation=dilation, bias=use_bias),
            nn.BatchNorm2d(num_features=out_channels),
            nn.ReLU6(),
        )

    def forward(self, x):
        return self.features(x)


参考链接如下:
https://blog.csdn.net/weixin_44791964/article/details/103017389
https://zhuanlan.zhihu.com/p/68531147

  • 2
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值