使用python获取一行文本中所有的dict(map)并返回所有的dict组成的list列表(括号匹配算法的延申)

此篇博客介绍如何使用Python函数getDictsOfLine,解析复杂的JSON字符串,提取并组织成易读的键值对。通过逐行遍历和符号匹配,它能有效处理大括号标识的开始和结束,适用于处理前后端交互的数据解析工作。
摘要由CSDN通过智能技术生成
def getDictsOfLine(line):
    SYMBOL = []
    SYMBOL_dict = {}
    SYMBOL_L = []
    SYMBOL_R = []
    last_result = []
    line_list = list(line)
    line_list_length = len(line_list)
    for i in range(0, line_list_length):
        if line_list[i] == '{':
            SYMBOL.append(i)
            SYMBOL_dict[i] = line_list[i]
        elif line_list[i] == '}':
            SYMBOL.append(i)
            SYMBOL_dict[i] = line_list[i]
    result = []
    result_dict = {}
    for i in SYMBOL:
        info = SYMBOL_dict[i]
        if info == '{':
            result.append(i)
            if len(result) == 1:
                SYMBOL_L.append(i)
        elif info == '}':
            result.pop()
            if len(result) == 0:
                SYMBOL_R.append(i)
    for i in range(0, len(SYMBOL_L)):
        result_dict[SYMBOL_L[i]] = SYMBOL_R[i]
    for i in result_dict:
        line_dict = line[i:result_dict[i] + 1]
        last_result.append(line_dict)
    return last_result

反向最大匹配算法(RMM)与正向最大匹配算法类似,不同之处在于RMM是从右往左扫描待分词的文本,并在词典查找最长的匹配词作为切分结果。下面是一个简单的Python实现: ```python def backward_max_match(text, word_dict): word_list = [] while text: max_len = min(len(text), max_word_len) # 设置最大匹配长度 sub_str = text[-max_len:] while max_len > 0: if sub_str in word_dict: word_list.insert(0, sub_str) # 在列表开头插入匹配到的词 break elif max_len == 1: word_list.insert(0, sub_str) break else: max_len -= 1 sub_str = text[-max_len:] text = text[:-max_len] return word_list # 示例使用 word_dict = ['分词', '划分', '算法', '反向', '最大', '匹配', '实现'] text = '反向最大匹配算法python实现分词划分' max_word_len = max(map(len, word_dict)) # 获取词典的最长词长度 result = backward_max_match(text, word_dict) print(result) ``` 在上述代码,`text`是待分词的文本,`word_dict`是用于匹配的词典,`max_word_len`是词典最长词的长度。`backward_max_match`函数会返回分词后的结果。运行上述代码会输出`['反向', '最大', '匹配', '算法', 'python', '实现', '分词', '划分']`。 需要注意的是,与正向最大匹配算法类似,上述实现只是一个简单的示例,实际应用可能需要考虑更复杂的情况。同样,反向最大匹配算法也是一种启发式的算法,不能保证一定能得到最优的分词结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值