机器学习逻辑回归
逻辑回归:逻辑回归通过构造回归函数,利用机器学习来实现分类或者预测,算法输出值(预测值)一直介于0和1之间,因此逻辑回归是一种分类算法(classification y = 0 or 1)。
**训练集/训练样例:**用来进行训练,也是产生模型或者算法的数据集
逻辑回归的使用: 基于sigmoid函数的逻辑回归,主要应用于预测 0-1 概率问题,逻辑回归也被用来处理不同的分类问题,这里的目的是预测当前被观察的对象属于哪个组。它会给你提供一个离散的二进制输出结果。一个简单的例子就是判断一个人是否感染了恶性肿瘤。
例如如图,就是一个判断肿瘤是否为恶性的逻辑回归模型,其中 1 表示是恶性肿瘤, 0 表示非恶行肿瘤。其中结果只有两种——1(是)——0(不是)。
**Sigmoid函数:**Sigmoid函数是一个S型曲线,可以实现将任意真实值映射为值域范围0-1的值,但从来不局限于这些限制,这些概率值必须转换为二进制数,以便实际中进行预测。这是逻辑函数的任务,也被称为sigmoid函数。然后使用阈值分类器将(0,1)范围的值转换为0和1的值来表示结果。
**逻辑回归与线性回归的区别:**逻辑回归给出离散的输出结果,然而线性回归给出的是连续的输出结果。
机器学习逻辑回归
最新推荐文章于 2019-05-01 19:04:58 发布