运维(安稳长满优)

运维:
安稳长满优

安全、稳定、长周期、满负荷、优于扩展

基础设施安全:硬件安全、网络安全、系统安全、运行时安全

不稳定因素:天灾、人祸
天灾:高可用设计(HA)、异地备份
人祸:操作权限限制和审核机制的建立、在人为因素发生后,快速的恢复系统和记录日志

长周期:日常工作自动化

满负荷:反向代理,负载均衡。。。有状态(读写分离)和无状态服务

优于扩展:docker容器、健康监视。。。

CAP定理:CAP原则又称CAP定理,指的是在一个分布式系统中,一致性(Consistency)、可用性(Availability)、分区容错性(Partition tolerance)。CAP 原则指的是,这三个要素最多只能同时实现两点,不可能三者兼顾。
特性:一致性、可用性、分区容忍性
应用:分布式系统
特点:最多只能同时实现两点

数据集介绍:道路多类别交通目标检测数据集 一、基础信息 数据集名称:道路多类别交通目标检测数据集 数据规模: - 训练集:728张道路场景图片 - 验证集:217张道路场景图片 - 测试集:100张道路场景图片 分类类别: Animal(动物)、Auto(机动车)、Bus(公交车)、Car(轿车)、Carts(手推车)、Person(行人)、Rikshaw(人力车)、Truck(卡车)、Two-wheeler(两轮车) 标注格式: YOLO格式标注,包含标准化中心坐标和宽高比例,每行标注对应一个检测目标 数据特性:JPEG格式真实道路采集图像,涵盖日间多种光照条件场景 二、适用场景 自动驾驶系统开发: 支持开发适用于印度复杂道路环境的感知系统,可识别9类典型交通参与者与障碍物 智能交通监控系统: 用于训练交通流量统计、违规行为检测等AI模型,适配路口监控设备部署 车载安全预警系统: 提供典型印度道路元素识别能力,支持开发两轮车预警、行人防撞等车载安全功能 区域交通研究: 包含特色交通元素(人力车、动物等),支持南亚地区交通特征研究 三、数据集势 典型道路元素全覆盖: 包含印度道路特有的三轮人力车、动物穿行等特色场景,9个类别精准覆盖机动车/非机动车/行人等核心交通要素 真实场景适配性强: 数据采集自真实道路环境,包含密集车流、混合交通等复杂场景,提升模型实际部署效果 标注质量保障: 专业标注团队进行三轮质量校验,确保边界框定位准确率和类别标注正确率>98% 模型训练友好性: 严格划分训练集/验证集/测试集,标注文件与图片文件一一对应,支持YOLO系列模型即插即用训练 地域特征突出: 专注印度及南亚地区道路环境,包含右舵驾驶、特殊交通标志等区域特征数据
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值