Day 38算法记录|动态规划 04

讲解

1. 二维背包问题

视频解析说的很好
在这里插入图片描述
dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。
d p [ i ] [ j ] = m a x ( d p [ i − 1 ] [ j ] , d p [ i − 1 ] [ j − w e i g h t [ i ] ] + v a l u e [ i ] ) dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]) dp[i][j]=max(dp[i1][j],dp[i1][jweight[i]]+value[i]);

在这里插入图片描述
对应的java代码:在这里插入图片描述

2. 一维背包问题

dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j]文字解析

二维: d p [ i ] [ j ] = m a x ( d p [ i − 1 ] [ j ] , d p [ i − 1 ] [ j − w e i g h t [ i ] ] + v a l u e [ i ] ) dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]) dp[i][j]=max(dp[i1][j],dp[i1][jweight[i]]+value[i]);

一维: d p [ j ] = m a x ( d p [ j ] , d p [ j − w e i g h t [ i ] ] + v a l u e [ i ] ) ; dp[j] = max(dp[j], dp[j - weight[i]] + value[i]); dp[j]=max(dp[j],dp[jweight[i]]+value[i]);
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

416. 分割等和子集

所有元素的和一定要是偶数,再想成背包问题

只有把这个包装满,才算true, 包的容量是sum/2 ,所以有两种情况,选不选当前商品
dp[i][j]表示从数组的 [0, i] 这个子区间内挑选一些正整数 , 每个数只能用一次,使得这些数的和恰好等于 j。
在这里插入图片描述

  1. dp[i - 1][j]表示该物品不放入背包,如果在 [0, i - 1] 这个子区间内已经有一部分元素,使得它们的和为 j ,那么 dp[i][j] = true;
  2. dp[i - 1][j - nums[i]]表示该物品放入背包。如果在 [0, i - 1] 这个子区间内就得找到一部分元素,使得它们的和为 j - nums[i]。

d p [ i ] [ j ] = d p [ i − 1 ] [ j ] ∣ ∣ d p [ i − 1 ] [ j − n u m s [ i ] ] dp[i][j] = dp[i - 1][j] || dp[i - 1][j - nums[i]] dp[i][j]=dp[i1][j]∣∣dp[i1][jnums[i]];
在这里插入图片描述就是dp[3][11] 里面装的11,那对应的dp[i - 1][j - nums[i]] = dp[2][6]也装满了,就是【1,5,5】

在这里插入图片描述

class Solution {
    public boolean canPartition(int[] nums) {
    if(nums ==null || nums.length ==0) return false;

     int sum =0;
     for(int num :nums){
         sum +=num;
     }

     if(sum%2 != 0) return false;

     //开始背包问题, 包的容量是11
     sum = sum/2;
     boolean[] dp = new boolean[sum+1];
     dp[0] =true;
    for(int num :nums){
        for(int i= sum;i>=num;i--){
            dp[i] = dp[i]||dp[i-num];
        }
    }
    return dp[sum];
    }
}

关键点:这道题要倒着写
初始化:dp[0] = true;
n u m < = i < = s u m num<= i <= sum num<=i<=sum
dp[i]表示当前背包容量为 i i i,是否能够被填满

  1. 按照数组元素遍历,不选当前的元素,就还是dp[i]
  2. 将当前元素加入背包,那么dp[i-num],加入了之后,剩余容量中是否能装下前面的遍历的物品(所以才是倒序的)

完全就是背包问题:

class Solution {
    public boolean canPartition(int[] nums) {
   int sum = Arrays.stream(nums).sum();
   int n = nums.length;
   if(sum%2!=0){
     return false;
   }

   int half = sum/2;
   int[] dp = new int[half+1];

  for(int i=0;i<n;i++){
      for(int j =half;j>=nums[i];j--){
          dp[j] = Math.max(dp[j],dp[j-nums[i]]+nums[i]);
      }
  }

   return dp[half] == half;

    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值