一、题目描述
以数组 intervals
表示若干个区间的集合,其中单个区间为 intervals[i] = [starti, endi]
。请你合并所有重叠的区间,并返回 一个不重叠的区间数组,该数组需恰好覆盖输入中的所有区间 。
示例 1
输入:intervals = [[1,3],[2,6],[8,10],[15,18]]
输出:[[1,6],[8,10],[15,18]]
解释:区间 [1,3] 和 [2,6] 重叠, 将它们合并为 [1,6].
示例 2
输入:intervals = [[1,4],[4,5]]
输出:[[1,5]]
解释:区间 [1,4] 和 [4,5] 可被视为重叠区间。
提示:
1 <= intervals.length <= 10^4
intervals[i].length == 2
0 <= start_i <= end_i <= 10^4
二、代码
代码如下:
class Solution:
def merge(self, intervals: List[List[int]]) -> List[List[int]]:
intervals.sort()
if len(intervals) == 1:
return intervals
else:
length = len(intervals)
count = 1
index = 1
while count <= length-1:
if intervals[index-1][1] >= intervals[index][0] :
if intervals[index-1][1] <= intervals[index][1]:
intervals[index-1][1] = intervals[index][1]
intervals.pop(index)
count = count + 1
else:
intervals.pop(index)
count = count + 1
else:
index = index + 1
count = count + 1
print(intervals)
return intervals
三、解题思路
本题解题思路是依次遍历两两相邻的元素进行判断,判断条件为当前元素intervals[index-1]
下的第二个元素(即intervals[index-1][1]
)比后一个元素intervals[index]
下的第一个元素(即intervals[index][0]
)大的话,则满足合并条件,需要合并这2个元素。
需要注意合并时仍然需要判断合并之后的右区间是什么,有两种情况①当前元素的右区间 <= 后一个元素的右区间(例如:[1,3]
和[2,5]
合并为[1,5]
),此时则替换右区间为大的那个即可。②当前元素的右区间 > 后一个元素的右区间(例如:[1,5]
和[2,3]
合并为[1,5]
),此时仍然选择较大的那个作为右区间。
判断的次数为count
,因为是两两相邻判断,所以总共判断次数为intervals
的数组长度-1;采用index
记录当前判断位置。